第39节:判断数据头来接收一串数据的串口通用程序框架
扫描二维码
随时随地手机看文章
从业近十年!手把手教你单片机程序框架 第39讲
开场白:
上一节讲了判断数据尾的程序框架,但是在大部分的项目中,都是通过判断数据头来接收数据的,这一节要教会大家两个知识点:
第一个:如何在已经接收到的一串数据中解析数据头协议并且提取有效数据。
第二个:无论是判断数据头还是判断数据尾,无论是单片机还是上位机,最好在固定协议前多发送一个填充的无效字节0x00,因为硬件原因,第一个字节往往容易丢失。
具体内容,请看源代码讲解。
(1)硬件平台:
基于朱兆祺51单片机学习板。
(2)实现功能:
波特率是:9600 。
通讯协议:EB 00 55 XX YY
加无效填充字节后,上位机实际上应该发送:00 EB 00 55 XX YY
其中第1位00是无效填充字节,防止由于硬件原因丢失第一个字节。
其中第2,3,4位EB 00 55就是数据头
后2位XX YY就是有效数据
任意时刻,单片机从电脑“串口调试助手”上位机收到的一串数据中,只要此数据中包含关键字EB 00 55 ,并且此关键字后面两个字节的数据XX YY 分别为01 02,那么蜂鸣器鸣叫一声表示接收的数据头和有效数据都是正确的。
(3)源代码讲解如下:
#include "REG52.H"
#define const_voice_short 40 //蜂鸣器短叫的持续时间
#define const_rc_size 10 //接收串口中断数据的缓冲区数组大小
#define const_receive_time 5 //如果超过这个时间没有串口数据过来,就认为一串数据已经全部接收完,这个时间根据实际情况来调整大小
void initial_myself(void);
void initial_peripheral(void);
void delay_long(unsigned int uiDelaylong);
void T0_time(void); //定时中断函数
void usart_receive(void); //串口接收中断函数
void usart_service(void); //串口服务程序,在main函数里
sbit beep_dr=P2^7; //蜂鸣器的驱动IO口
unsigned int uiSendCnt=0; //用来识别串口是否接收完一串数据的计时器
unsigned char ucSendLock=1; //串口服务程序的自锁变量,每次接收完一串数据只处理一次
unsigned int uiRcregTotal=0; //代表当前缓冲区已经接收了多少个数据
unsigned char ucRcregBuf[const_rc_size]; //接收串口中断数据的缓冲区数组
unsigned int uiRcMoveIndex=0; //用来解析数据协议的中间变量
unsigned int uiVoiceCnt=0; //蜂鸣器鸣叫的持续时间计数器
void main()
{
initial_myself();
delay_long(100);
initial_peripheral();
while(1)
{
usart_service(); //串口服务程序
}
}
void usart_service(void) //串口服务程序,在main函数里
{
/* 注释一:
* 识别一串数据是否已经全部接收完了的原理:
* 在规定的时间里,如果没有接收到任何一个字节数据,那么就认为一串数据被接收完了,然后就进入数据协议
* 解析和处理的阶段。这个功能的实现要配合定时中断,串口中断的程序一起阅读,要理解他们之间的关系。
*/
if(uiSendCnt>=const_receive_time&&ucSendLock==1) //说明超过了一定的时间内,再也没有新数据从串口来
{
ucSendLock=0; //处理一次就锁起来,不用每次都进来,除非有新接收的数据
//下面的代码进入数据协议解析和数据处理的阶段
uiRcMoveIndex=0; //由于是判断数据头,所以下标移动变量从数组的0开始向最尾端移动
/* 注释二:
* 判断数据头,进入循环解析数据协议必须满足两个条件:
* 第一:最大接收缓冲数据必须大于一串数据的长度(这里是5。包括2个有效数据,3个数据头)
* 第二:游标uiRcMoveIndex必须小于等于最大接收缓冲数据减去一串数据的长度(这里是5。包括2个有效数据,3个数据头)
*/
while(uiRcregTotal>=5&&uiRcMoveIndex<=(uiRcregTotal-5))
{
if(ucRcregBuf[uiRcMoveIndex+0]==0xeb&&ucRcregBuf[uiRcMoveIndex+1]==0x00&&ucRcregBuf[uiRcMoveIndex+2]==0x55) //数据头eb 00 55的判断
{
if(ucRcregBuf[uiRcMoveIndex+3]==0x01&&ucRcregBuf[uiRcMoveIndex+4]==0x02) //有效数据01 02的判断
{
uiVoiceCnt=const_voice_short; //蜂鸣器发出声音,说明数据头和有效数据都接收正确
}
break; //退出循环
}
uiRcMoveIndex++; //因为是判断数据头,游标向着数组最尾端的方向移动
}
uiRcregTotal=0; //清空缓冲的下标,方便下次重新从0下标开始接受新数据
}
}
void T0_time(void) interrupt 1 //定时中断
{
TF0=0; //清除中断标志
TR0=0; //关中断
if(uiSendCnt
{
uiSendCnt++; //表面上这个数据不断累加,但是在串口中断里,每接收一个字节它都会被清零,除非这个中间没有串口数据过来
ucSendLock=1; //开自锁标志
}
if(uiVoiceCnt!=0)
{
uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫
beep_dr=0; //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。
}
else
{
; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。
beep_dr=1; //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。
}
TH0=0xfe; //重装初始值(65535-500)=65035=0xfe0b
TL0=0x0b;
TR0=1; //开中断
}
void usart_receive(void) interrupt 4 //串口接收数据中断
{
if(RI==1)
{
RI = 0;
++uiRcregTotal;
if(uiRcregTotal>const_rc_size) //超过缓冲区
{
uiRcregTotal=const_rc_size;
}
ucRcregBuf[uiRcregTotal-1]=SBUF; //将串口接收到的数据缓存到接收缓冲区里
uiSendCnt=0; //及时喂狗,虽然main函数那边不断在累加,但是只要串口的数据还没发送完毕,那么它永远也长不大,因为每个中断都被清零。
}
else //我在其它单片机上都不用else这段代码的,可能在51单片机上多增加" TI = 0;"稳定性会更好吧。
{
TI = 0;
}
}
void delay_long(unsigned int uiDelayLong)
{
unsigned int i;
unsigned int j;
for(i=0;i
{
for(j=0;j<500;j++) //内嵌循环的空指令数量
{
; //一个分号相当于执行一条空语句
}
}
}
void initial_myself(void) //第一区 初始化单片机
{
beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。
//配置定时器
TMOD=0x01; //设置定时器0为工作方式1
TH0=0xfe; //重装初始值(65535-500)=65035=0xfe0b
TL0=0x0b;
//配置串口
SCON=0x50;
TMOD=0X21;
TH1=TL1=-(11059200L/12/32/9600); //这段配置代码具体是什么意思,我也不太清楚,反正是跟串口波特率有关。
TR1=1;
}
void initial_peripheral(void) //第二区 初始化外围
{
EA=1; //开总中断
ES=1; //允许串口中断
ET0=1; //允许定时中断
TR0=1; //启动定时中断
}
总结陈词:
这一节讲了常用的判断数据头来接收一串数据的程序框架,但是在很多项目中,仅仅靠判断数据头还是不够的,必须要有更加详细的通讯协议,比如可以包含数据类型,有效数据长度,有效数据,数据校验的通讯协议。这样的程序该怎么写?欲知详情,请听下回分解-----常用的自定义串口通讯协议。