当前位置:首页 > 单片机 > 单片机
[导读]从业近十年!手把手教你单片机程序框架 第75讲开场白:假设有一个固定的四方形透明窗口,在窗口里面放了一张画布,只要想办法让这个画布往右边拖动,那么画布里面的内容就会跟着画布整体往右边移动,这个就是能以1个点

从业近十年!手把手教你单片机程序框架 第75讲

开场白:

假设有一个固定的四方形透明窗口,在窗口里面放了一张画布,只要想办法让这个画布

往右边拖动,那么画布里面的内容就会跟着画布整体往右边移动,这个就是能以1个点阵为单位进行移动显示的本质。同理,这个画布有16行,每行有4个字节,我们只要把每行4个字节看作是一个首尾连接的二进制数据,把每一行的二进制数据每次整体往右边移动一位,就相当于移动一个点阵了。这一节就要把这个算法教给大家。

具体内容,请看源代码讲解。

(1)硬件平台:

基于朱兆祺51单片机学习板。

(2)实现功能:开机上电后,能看到正中间显示的两个字符“V5”整体以1个点阵为单位向右边慢慢移动。

(3)源代码讲解如下:

#include "REG52.H"

#define const_MoveTime 400 //每移动一位后的延时时间

sbit LCDCS_dr = P1^6; //片选线

sbit LCDSID_dr = P1^7; //串行数据线

sbit LCDCLK_dr = P3^2; //串行时钟线

sbit LCDRST_dr = P3^4; //复位线

void SendByteToLcd(unsigned char ucData); //发送一个字节数据到液晶模块

void SPIWrite(unsigned char ucWData, unsigned char ucWRS); //模拟SPI发送一个字节的命令或者数据给液晶模块的底层驱动

void WriteCommand(unsigned char ucCommand); //发送一个字节的命令给液晶模块

void LCDWriteData(unsigned char ucData); //发送一个字节的数据给液晶模块

void LCDInit(void); //初始化 函数内部包括液晶模块的复位

void display_clear(unsigned char ucFillDate); // 清屏 全部显示空填充0x00 全部显示点阵用0xff

void insert_buffer_to_canvas(unsigned int x,unsigned int y,const unsigned char *ucArray,unsigned char ucFbFlag,unsigned int x_amount,unsigned int y_amount);//把字模插入画布.

void display_lattice(unsigned int x,unsigned int y,const unsigned char *ucArray,unsigned char ucFbFlag,unsigned int x_amount,unsigned int y_amount,unsigned int uiOffSetAddr); //显示任意点阵函数

void delay_short(unsigned int uiDelayshort); //延时

void move_service(void); //整体画布移动的应用程序

void lcd_display_service(void); //应用层面的液晶屏显示程序

void move_canvas_to_one_bit(void); //把画布整体往右边移动一个点阵

void clear_all_canvas(void); //把画布全部清零

void T0_time(void); //定时中断函数

code unsigned char Zf816_V[]= /*V 横向取模 8x16点阵 每一行只要1个字节,共16行 */

{

0x00,

0x00,

0x00,

0xE7,

0x42,

0x42,

0x44,

0x24,

0x24,

0x28,

0x28,

0x18,

0x10,

0x10,

0x00,

0x00,

};

code unsigned char Zf816_5[]= /*5 横向取模 8x16点阵 每一行只要1个字节,共16行 */

{

0x00,

0x00,

0x00,

0x7E,

0x40,

0x40,

0x40,

0x58,

0x64,

0x02,

0x02,

0x42,

0x44,

0x38,

0x00,

0x00,

};

/* 注释一:

* 为了实现跨区域无缝显示,就先在某个区域显示一块画布,我们只要在这块画布数组中插入字模数组,

* 就可以达到跨区域无缝显示的目的。根据上几节的介绍,12864液晶屏由上下两半屏组成,以下这块画布

* 显示在上半屏和下半屏之间。横向4个字节,纵向16行。其中上半屏显示8行,下半屏显示8行。注意,这个数组

* 不带code关键字,是全局变量,这样可读可写。画布的横向x坐标范围是0至3,因为画布的横向只要4个字节。

* 画布的纵向y坐标范围是0至15,因为画布的纵向只有16行。

*/

unsigned char ucCanvasBuffer[]= //画布显示数组。注意,这里没有code关键字,是全局变量。初始化全部填充0x00

{

0x00,0x00,0x00,0x00, //上半屏

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

//------------上半屏和下半屏的分割线-----------

0x00,0x00,0x00,0x00, //下半屏

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,

};

unsigned char ucDisplayUpdate=1; //更新显示变量

unsigned char ucMoveStepReset=0; //这个变量是为了方便外部程序初始化应用程序内部后缀为step的步骤变量

unsigned char ucMoveTimeStart=0; //定时器的开关标志 也相当于原子锁或互斥量的功能

unsigned int uiMoveTime=0; //定时器累计时间

void main()

{

LCDInit(); //初始化12864 内部包含液晶模块的复位

display_clear(0xff); // 清屏 全部显示空填充0x00 全部显示点阵用0xff

TMOD=0x01; //设置定时器0为工作方式1

TH0=0xf8; //重装初始值(65535-2000)=63535=0xf82f

TL0=0x2f;

EA=1; //开总中断

ET0=1; //允许定时中断

TR0=1; //启动定时中断

while(1)

{

move_service(); //整体画布移动的应用程序

lcd_display_service(); //应用层面的液晶屏显示程序

}

}

void move_service(void) //整体画布移动的应用程序

{

static unsigned char ucMoveStep=0; //运行步骤。前面加关键字static表示上电后这个变量只初始化一次,以后每次进出函数此变量不会重新初始化,保存之前的更改数值不变。

static unsigned char ucMoveCnt=0; //统计当前已经往左边移动了多少位。关键字static表示此变量上电后只初始化一次,不会每次进入函数都初始化。

if(ucMoveStepReset==1) //运行步骤的复位标志,此段代码结构方便外部程序初始化函数内部的步骤变量ucMoveStep

{

ucMoveStepReset=0; //及时把复位标志清零。避免一直处于复位的状态、

ucMoveStep=0; //运行步骤变量被外部程序通过复位标志初始化。

}

switch(ucMoveStep)

{

case 0:

clear_all_canvas(); //把画布全部清零

insert_buffer_to_canvas(0,0,Zf816_V,0,1,16);//把的字模插入画布

insert_buffer_to_canvas(1,0,Zf816_5,0,1,16);//把<5>的字模插入画布

ucDisplayUpdate=1; //更新液晶屏显示

uiMoveTime=0; //定时器清零

ucMoveTimeStart=1; //开定时器 也相当于原子锁或互斥量的功能

ucMoveCnt=0; //统计当前已经往左边移动了多少位

ucMoveStep=1; //切换到下一个运行步骤

break;

case 1:

if(uiMoveTime>const_MoveTime) //延时一定的时间后

{

ucMoveTimeStart=0; //关定时器 也相当于原子锁或互斥量的功能

uiMoveTime=0; //定时器清零

if(ucMoveCnt<16)

{

ucMoveCnt++;

move_canvas_to_one_bit(); //把画布整体往左边移动一个点阵

ucDisplayUpdate=1; //更新液晶屏显示

ucMoveTimeStart=1; //开定时器 也相当于原子锁或互斥量的功能

}

else

{

ucMoveStep=0; //移动了16个点阵后,返回上一个运行步骤,把字模重新插入画布

}

}

break;

}

}

void lcd_display_service(void) //应用层面的液晶屏显示程序

{

if(ucDisplayUpdate==1) //需要更新显示

{

ucDisplayUpdate=0; //及时把标志清零,避免一直处于不断更新的状态。

display_lattice(3,24,ucCanvasBuffer,0,4,8,0); //显示上半屏的画布,最后的参数0是偏移量

display_lattice(11,0,ucCanvasBuffer,0,4,8,32); //显示下半屏的画布,最后的参数32是偏移量

}

}

/* 注释二:

* 假设有一个固定的四方形透明窗口,在窗口里面放了一张画布,只要想办法让这个画布

* 往右边拖动,那么画布里面的内容就会跟着画布整体往右边移动,这个就是能以1个点阵为单位进行移动显示的本质。

* 同理,这个画布有16行,每行有4个字节,我们只要把每行4个字节看作是一个首尾连接的二进制数据,

* 把每一行的二进制数据每次整体往右边移动一位,就相当于移动一个点阵了。

*/

void move_canvas_to_one_bit(void) //把画布整体往右边移动一个点阵

{

unsigned int j=0;

unsigned int i=0;

unsigned char ucBitH; //临时保存一个字节中的最高位

unsigned char ucBitL; //临时保存一个字节中的最低位

for(j=0;j<16;j++) //这里的16表示画布有16行

{

ucBitH=0;

ucBitL=0;

for(i=0;i<4;i++) //这里的4表示画布每行有4个字节

{

if((ucCanvasBuffer[j*4+i]&0x01)==0x01) //临时保存一个字节中的最低位

{

ucBitL=1;

}

else

{

ucBitL=0;

}

ucCanvasBuffer[j*4+i]=ucCanvasBuffer[j*4+i]>>1; //一行中的一个字节右移一位

if(ucBitH==1) //原来左边相邻的字节最低位移动到了当前字节的最高位

{

ucCanvasBuffer[j*4+i]=ucCanvasBuffer[j*4+i]|0x80; //把最高位补上

}

ucBitH=ucBitL; //把当前的最低位赋值给最高位,为下一个相邻字节做准备。

}

}

}

void clear_all_canvas(void) //把画布全部清零

{

unsigned int j=0;

unsigned int i=0;

for(j=0;j<16;j++) //这里的16表示画布有16行

{

for(i=0;i<4;i++) //这里的4表示画布每行有4个字节

{

ucCanvasBuffer[j*4+i]=0x00;

}

}

}

void T0_time(void) interrupt 1 //定时中断函数

{

TF0=0; //清除中断标志

TR0=0; //关中断

if(ucMoveTimeStart==1) //已经开了定时器 也相当于原子锁或互斥量的功能

{

uiMoveTime++; //定时器累加计时开始

}

TH0=0xf8; //重装初始值(65535-2000)=63535=0xf82f

TL0=0x2f;

TR0=1; //开中断

}

void display_clear(unsigned char ucFillDate) // 清屏 全部显示空填充0x00 全部显示点阵用0xff

{

unsigned char x,y;

WriteCommand(0x34); //关显示缓冲指令

WriteCommand(0x34); //关显示缓冲指令 故意写2次,怕1次关不了 这个是因为我参考到某厂家的驱动程序也是这样写的

y=0;

while(y<32) //y轴的范围0至31

{

WriteCommand(y+0x80); //垂直地址

WriteCommand(0x80); //水平地址

for(x=0;x<32;x++) //256个横向点,有32个字节

{

LCDWriteData(ucFillDate);

}

y++;

}

WriteCommand(0x36); //开显示缓冲指令

}

/* 注释三:

* 把字模插入画布的函数.

* 这是本节的核心函数,读者尤其要搞懂x_amount和y_amount对应的显示关系。

* 第1,2个参数x,y是在画布中的坐标体系。

* x的范围是0至3,因为画布的横向只要4个字节。y的范围是0至15,因为画布的纵向只有16行。

* 第3个参数*ucArray是字模的数组。

* 第4个参数ucFbFlag是反白显示标志。0代表正常显示,1代表反白显示。

* 第5,6个参数x_amount,y_amount分别代表字模数组的横向有多少个字节,纵向有几横。

*/

void insert_buffer_to_canvas(unsigned int x,unsigned int y,const unsigned char *ucArray,unsigned char ucFbFlag,unsigned int x_amount,unsigned int y_amount)

{

unsigned int j=0;

unsigned int i=0;

unsigned char ucTemp;

for(j=0;j

{

for(i=0;i

{

ucTemp=ucArray[j*x_amount+i];

if(ucFbFlag==0)

{

ucCanvasBuffer[(y+j)*4+x+i]=ucTemp; //这里的4代表画布每一行只有4个字节

}

else

{

ucCanvasBuffer[(y+j)*4+x+i]=~ucTemp; //这里的4代表画布每一行只有4个字节

}

}

}

}

/* 注释四:

* 显示任意点阵函数.

* 注意,本函数在前几节的基础上多增加了第7个参数uiOffSetAddr,它是偏移地址。

* 对于这个函数,读者尤其要搞懂x_amount和y_amount对应的显示关系。

* 第1,2个参数x,y是坐标体系。x的范围是0至15,y的范围是0至31.

* 第3个参数*ucArray是字模的数组。

* 第4个参数ucFbFlag是反白显示标志。0代表正常显示,1代表反白显示。

* 第5,6个参数x_amount,y_amount分别代表字模数组的横向有多少个字节,纵向有几横。

* 第7个参数uiOffSetAddr是偏移地址,代表字模数组的从第几个数据开始显示。

*/

void display_lattice(unsigned int x,unsigned int y,const unsigned char *ucArray,unsigned char ucFbFlag,unsigned int x_amount,unsigned int y_amount,unsigned int uiOffSetAddr)

{

unsigned int j=0;

unsigned int i=0;

unsigned char ucTemp;

//注意,要把以下两行指令屏蔽,否则屏幕在更新显示时会整屏闪动

// WriteCommand(0x34); //关显示缓冲指令

// WriteCommand(0x34); //关显示缓冲指令 故意写2次,怕1次关不了 这个是因为我参考到某厂家的驱动程序也是这样写的

for(j=0;j

{

WriteCommand(y+j+0x80); //垂直地址

WriteCommand(x+0x80); //水平地址

for(i=0;i

{

ucTemp=ucArray[j*x_amount+i+uiOffSetAddr]; //uiOffSetAddr是字模数组的偏移地址

if(ucFbFlag==1) //反白显示

{

ucTemp=~ucTemp;

}

LCDWriteData(ucTemp);

// delay_short(30000); //把上一节这个延时函数去掉,加快刷屏速度

}

}

WriteCommand(0x36); //开显示缓冲指令

}

void SendByteToLcd(unsigned char ucData) //发送一个字节数据到液晶模块

{

unsigned char i;

for ( i = 0; i < 8; i++ )

{

if ( (ucData << i) & 0x80 )

{

LCDSID_dr = 1;

}

else

{

LCDSID_dr = 0;

}

LCDCLK_dr = 0;

LCDCLK_dr = 1;

}

}

void SPIWrite(unsigned char ucWData, unsigned char ucWRS) //模拟SPI发送一个字节的命令或者数据给液晶模块的底层驱动

{

SendByteToLcd( 0xf8 + (ucWRS << 1) );

SendByteToLcd( ucWData & 0xf0 );

SendByteToLcd( (ucWData << 4) & 0xf0);

}

void WriteCommand(unsigned char ucCommand) //发送一个字节的命令给液晶模块

{

LCDCS_dr = 0;

LCDCS_dr = 1;

SPIWrite(ucCommand, 0);

delay_short(90);

}

void LCDWriteData(unsigned char ucData) //发送一个字节的数据给液晶模块

{

LCDCS_dr = 0;

LCDCS_dr = 1;

SPIWrite(ucData, 1);

}

void LCDInit(void) //初始化 函数内部包括液晶模块的复位

{

LCDRST_dr = 1; //复位

LCDRST_dr = 0;

LCDRST_dr = 1;

}

void delay_short(unsigned int uiDelayShort) //延时函数

{

unsigned int i;

for(i=0;i

{

;

}

}

总结陈词:

从下一节开始讲大家关注已久的液晶屏菜单程序。欲知详情,请听下回分解-----在1个窗口里通过移动光标来设置不同参数的液晶屏菜单程序。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭