当前位置:首页 > 单片机 > 单片机
[导读]Cyclic Redundancy Check循环冗余检验,是基于数据计算一组效验码,用于核对数据传输过程中是否被更改或传输错误。

Cyclic Redundancy Check循环冗余检验,是基于数据计算一组效验码,用于核对数据传输过程中是否被更改或传输错误。

算法原理

假设数据传输过程中需要发送15位的二进制信息g=101001110100001,这串二进制码可表示为代数多项式g(x) = x^14 + x^12 + x^9 + x^8 + x^7 + x^5 + 1,其中g中第k位的值,对应g(x)中x^k的系数。将g(x)乘以x^m,既将g后加m个0,然后除以m阶多项式h(x),得到的(m-1)阶余项r(x)对应的二进制码r就是CRC编码。

h(x)可以自由选择或者使用国际通行标准,一般按照h(x)的阶数m,将CRC算法称为CRC-m,比如CRC-32、CRC-64等。

g(x)和h(x)的除运算,可以通过g和h做xor(异或)运算。比如将11001与10101做xor运算:

 

 

明白了xor运算法则后,举一个例子使用CRC-8算法求101001110100001的效验码。CRC-8标准的h(x) = x^8 + x^7 + x^6 + x^4 + x^2 + 1,既h是9位的二进制串111010101。

 

 

经过迭代运算后,最终得到的r是10001100,这就是CRC效验码。

通过示例,可以发现一些规律,依据这些规律调整算法:

1. 每次迭代,根据gk的首位决定b,b是与gk进行运算的二进制码。若gk的首位是1,则b=h;若gk的首位是0,则b=0,或者跳过此次迭代,上面的例子中就是碰到0后直接跳到后面的非零位。

 

 

2. 每次迭代,gk的首位将会被移出,所以只需考虑第2位后计算即可。这样就可以舍弃h的首位,将b取h的后m位。比如CRC-8的h是111010101,b只需是11010101。

 

 

3. 每次迭代,受到影响的是gk的前m位,所以构建一个m位的寄存器S,此寄存器储存gk的前m位。每次迭代计算前先将S的首位抛弃,将寄存器左移一位,同时将g的后一位加入寄存器。若使用此种方法,计算步骤如下:

 

 

※蓝色表示寄存器S的首位,是需要移出的,b根据S的首位选择0或者h。黄色是需要移入寄存器的位。S'是经过位移后的S。

查表法

同样是上面的那个例子,将数据按每4位组成1个block,这样g就被分成6个block。

 

 

下面的表展示了4次迭代计算步骤,灰色背景的位是保存在寄存器中的。

 

 

经4次迭代,B1被移出寄存器。被移出的部分,不我们关心的,我们关心的是这4次迭代对B2和B3产生了什么影响。注意表中红色的部分,先作如下定义:

B23 = 00111010

b1 = 00000000

b2 = 01010100

b3 = 10101010

b4 = 11010101

b' = b1 xor b2 xor b3 xor b4

4次迭代对B2和B3来说,实际上就是让它们与b1,b2,b3,b4做了xor计算,既:

B23 xor b1 xor b2 xor b3 xor b4

可以证明xor运算满足交换律和结合律,于是:

B23 xor b1 xor b2 xor b3 xor b4 = B23 xor (b1 xor b2 xor b3 xor b4) = B23 xor b'

b1是由B1的第1位决定的,b2是由B1迭代1次后的第2位决定(既是由B1的第1和第2位决定),同理,b3和b4都是由B1决定。通过B1就可以计算出b'。另外,B1由4位组成,其一共2^4有种可能值。于是我们就可以想到一种更快捷的算法,事先将b'所有可能的值,16个值可以看成一个表;这样就可以不必进行那4次迭代,而是用B1查表得到b'值,将B1移出,B3移入,与b'计算,然后是下一次迭代。

 

 

可看到每次迭代,寄存器中的数据以4位为单位移入和移出,关键是通过寄存器前4位查表获得

,这样的算法可以大大提高运算速度。

上面的方法是半字节查表法,另外还有单字节和双字节查表法,原理都是一样的——事先计算出2^8或2^16个b'的可能值,迭代中使用寄存器前8位或16位查表获得b'。

反向算法

之前讨论的算法可以称为正向CRC算法,意思是将g左边的位看作是高位,右边的位看作低位。G的右边加m个0,然后迭代计算是从高位开始,逐步将低位加入到寄存器中。在实际的数据传送过程中,是一边接收数据,一边计算CRC码,正向算法将新接收的数据看作低位。

逆向算法顾名思义就是将左边的数据看作低位,右边的数据看作高位。这样的话需要在g的左边加m个0,h也要逆向,例如正向CRC-16算法h=0x4c11db8,逆向CRC-16算法h=0xedb88320。b的选择0还是h,由寄存器中右边第1位决定,而不是左边第1位。寄存器仍旧是向左位移,就是说迭代变成从低位到高位。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭