当前位置:首页 > 模拟 > 模拟
[导读]引言有限的带宽和不断增加的新的无线服务的需求为通信领域新技术的采用开辟了道路,这些非传统技术有效提升了数据容量。新采用的这些技术中的一种就是利用多天线设计的多输入、多输出(MIMO)系统架构。MIMO利用了发

引言

有限的带宽和不断增加的新的无线服务的需求为通信领域新技术的采用开辟了道路,这些非传统技术有效提升了数据容量。新采用的这些技术中的一种就是利用多天线设计的多输入、多输出(MIMO)系统架构。MIMO利用了发送和接收天线之间的空间分集技术——由信号衰落和多径环境引起的多信号路径产生——来增加数据吞吐量而无须额外的增加带宽。但相比传统的单流架构MIMO,系统复杂度增加了许多,带来了更大的测试挑战,需要独特的设备和测试方法。

本文介绍了MIMO测量的不同种类,包括噪声和干扰对于信道的损害,并提供一些图片示例方便大家对于测量结果的理解。

对于新近的无线通信标准,高数据吞吐量是最基本的要求,这些新标准MIMO都有参与,包括IEEE 802.11n WLAN、IEEE 802.16e移动WiMAX Wave 2和3GPP长期演进(LTE)。这些新系统都结合了MIMO和OFDM或者OFDMA(正交频分多址接入)的采用,来实现在不增加信道带宽的前提下增加数据吞吐量。

SISO与MIMO比较

在传统的单输入、单输出(SISO)通信系统中(如图1a所示),例如,传统的IEEE 802.11a/b/g无线局域网络(WLAN)系统,一个无线链路采用了单发射器和单接收器。也许会在每个通信链路终端上采用多个天线,但在同一时刻只有一套天线被采用,并只有一个载波传输单流的数据。在理想的通信信道中,无线信号从发射器到接收器只通过单一路径传输,但无线信道中的障碍物(比如楼宇和各种地形)和移动影响产生了多径效应,因此,接收器会接收到多个信号。反射的信号由于相比直接传输的信号传播路径更长,会受到衰减和延迟的影响。因为传输路径的不同,这些反射信号的相位也各不相同。因此,接收机信号的重建面临难度,会造成接收信号强度的波动。较强的多径效应会降低吞吐量或者造成数据丢失。

图1 传统的SISO架构的无线信号链路(a),采用一对天线在同一时间进行发射和接收而MIMO系统(b)同时采用多信号和多天线

因为在指定通信信道中,OFDM通常与MIMO进行组合来增强数据吞吐量,所以在探讨MIMO概念之前理解OFDM是非常重要的。例如,OFDM在 IEEE 802.11g (Wi-Fi)和IEEE 802.16e WiMAX系统中得到了采用。在MIMO的基础上,采用OFDM可以进一步提升数据吞吐量,而无须增加带宽或改变调制阶数——比如从16QAM变成 64QAM系统。

采用OFDM调制的无线信号本质上是由一系列相互正交的子载波构成的,这些子载波彼此形成了最佳的隔离,因此一个调制后的子载波处于最大功率时,其临近调制后子载波正好处于过零点或功率最小处,而一些子载波作为保护频带来实现隔离并防止临近信道干扰。为了增强鲁棒性,许多通信标准采用的 OFDM采用了小衰减间隔,让多路信号分量随时间衰减,这样这些信号就不会对下一个接收机收到的传输符号产生干扰。

通过采用反向傅里叶变换对OFDM的子载波进行数字信号处理,可将其结合到一个信号流里面传输并可恢复原信号。因为保留多流信号的相对相位和频率关系,这些信号流就可以并行的在单一信道传输,所以就可以实现在不增加带宽的前提下提高数据吞吐量。

与SISO通信系统相比,MIMO系统(图1b)同时采用多无线信号和多天线,多个数据流在同一通信信道传输。这些多路的数据流由媒体接入控制(MAC)层在通信链路两端进行协调。MIMO系统不需要天线的对称排列,例如,两个发射要配备两个接收(2×2)或者四个发射要配备四个接收(4×4),可以进行“不平衡”配置,例如四个发射配备三个接收的4×3配置。

要增加SISO系统的数据吞吐量,需要更为复杂的调制方式,或者增加带宽,或进行两者的结合。加倍SISO系统吞吐量最简单的方法是将带宽加倍。要增加MIMO系统的吞吐量,发射器、接收器和相应天线的数量需要增加。通过采用多天线和信号传播路径的空间多路技术,MIMO系统可以在不增加信道带宽的前提下增加大概3.5倍的吞吐量。

MIMO系统利用接收信号的变更来增加数据吞吐量,接收到的信号被看作未知信号(发送的符号)的联立方程。多路信号路径的多样性变化让这些联立方程解决的更加简单,并提升了吞吐量。

SISO的信道容量与MIMO系统相比如何呢?香农定律指明了SISO通信系统的信道吞吐量为

C=BLog2(1+S/N)

式中:C为信道容量(单位b/s),B为信道带宽(单位Hz),S为带宽上总的信号功率(单位W或者V2),N为带宽上总的噪声功率(单位W或者V2)。当该公式用于MIMO应用时:

C=ABlog2(1+S/N)

式中:A为发射天线的数量。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭