当前位置:首页 > 模拟 > 模拟
[导读]WiMAX简介WiMax ( worldwide interoperability for microwave access,微波接入全球互通)是基于IEEE 802.16标准的一种无线传输技术 。作为连接用户“最后一公里”的技术, WiMax 被开发用于取代诸如 DSL等宽带有线网

WiMAX简介

WiMax ( worldwide interoperability for microwave access,微波接入全球互通)是基于IEEE 802.16标准的一种无线传输技术 。作为连接用户“最后一公里”的技术, WiMax 被开发用于取代诸如 DSL等宽带有线网络,并支持移动宽带无线接入,它采用OFDM传输技术来进行非视距( NLOS)连接,可提供高达75 Mbit/s的数据率。其中, IEEE 802.16-2004物理层又分为两种模式:OFDM和 OFDMA(正交频分复用)。在OFDM模式中,使用所有载波(200个)以TDD或FDD方式进行数据传输;在OFDMA 模式中,载波个数显著增加,并分为若干自频道(subchannelization),为每个用户指定一个或多个子频道,同时为多个用户提供服务。IEEE 802.16e主要为WiMax的移动应用而提出,其载波个数可根据使用的FFT基底(128,512, 1024, 2048)而显著变化,韩国标准WIBRO即是802.16e的一个特例。与WLAN不同,WiMAX 信号的带宽不是固定的,而是在1.25MHz和28MHz之间可变。

功率放大器的主要测试参数

对于通用的功率放大器,主要关注以下测试参数:

(1) 功率增益,反映放大器对信号的放大能力;

(2) 1dB压缩点,反映放大器的线性度,也即放大器放大大信号的能力;

(3) 最大输出功率,实际上,前两个指标即可反映放大器实际可用的最大输出功率。它们用CW信号来测试,只要信号源射频指标优异,具备功率扫描能力即可。

对于WiMAX功率放大器,为了全面衡量放大器的性能,往往还关注以下测试参数。

(4) “突发”输出功率:分为最小RMS “突发”输出功率, 平均 RMS “突发”输出功率和最大RMS “突发”输出功率。

(5) 频率误差:频率误差可以用相对于频谱仪中心频率的载波频率误差来描述。收发信机间的频率误差将引起各个子载波频谱相对于接收机FFT频率的移动,产生载波间干扰(ICI),如图1所示。

图1 频率误差引起的载波间干扰

(6) 符号时钟误差:指相对于系统采样时钟的参考符号时钟与实际测量的符号时钟之差。如果符号时钟比参考时钟低会使OFDM 信号比所要求的长,引起子载波间距减小;反之则引起子载波间距增加。两种情况都产生载波间干扰,使信号的EVM性能恶化。

(7) EVM (误差矢量幅度): 这是最重要的测试参数之一,以保证放大器在输出足够功率的同时获得良好的信号质量。 EVM 结果可以是对所有载波、数据载波和导频载波。

(8) ACPR (邻信道功率比):ACPR指相邻信道测得的功率与主信道功率之比,反映放大器失真对邻信道的干扰。

(9) 频谱平坦度:反映WiMAX信号子载波的功率变化,它测量每个子载波的平均功率对所有子载波平均功率的偏离。

(10) 频谱差(spectrum difference):测量突发前导部分相邻子载波的功率差异。

(11) 频谱模板(spectrum mask):测量发信机发射频谱的“轮廓”,以保证主信道外没有过多的功率发射。

对于上述的(5)、(8)、(9)、(10)、(11),虽然通用R&S 标准信号源的多载波连续波功能可以模拟一个WiMax信号来进行测量,但这样往往调节麻烦而且不够准确;而对于(4)、(6)、(7)则需要真正的WiMax信号才能进行测量,尤其是 EVM 。因此,一台能产生WiMax信号的信号源对WiMAX功放测试是必不可少的。

R&S WiMAX功放测试解决方案

R&S公司为WiMAX功放测试提供了快速、准确的解决方案。测试设置如图2所示,主要包括3部分。

图2 WiMAX功率放大器测试解决方案

(1)信号源: 使用SMU200A及选件SMU-K49,或者SMJ100A及选件SMJ-K49,都可以方便地产生 802.16 -2004- OFDM、WiMAX 802.16e OFDMA 和WIBRO 信号。其中SMU200A除具有极佳的射频及基带性能外,还带有强大的衰落模拟功能,更适合研发使用。

(2)频谱仪:FSQ系列频谱仪及选件R&S FSQ-K92支持 802.16-2004-OFDM信号分析;或者使用FSQ及选件FSQ-K93支持WiMAX 802.16e OFDMA 和WIBRO信号的分析;也可选择FSL系列频谱仪及选件FSL-K92支持 802.16-2004-OFDM信号的分析。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭