当前位置:首页 > 智能硬件 > 智能硬件
[导读]在此除了让各位读者欣赏深度学习版撩妹语录外,也顺便做些解说,好让没有接触过深度学习的人也能够了解每个神经网络的基本概念,同时解析深度学习撩妹语录里面各个神经网络为何会这么说。

最近网络上「撩妹语录」掀起风潮,藉由猜想各历史伟人会对女孩说的情话,搭配伟人严肃的肖像照,出现了许多版本的撩妹语录,趣味横生。 因此,我也做了深度学习版本的「撩妹语录」。 在此除了让各位读者欣赏深度学习版撩妹语录外,也顺便做些解说,好让没有接触过深度学习的人也能够了解每个神经网络的基本概念,同时解析深度学习撩妹语录里面各个神经网络为何会这么说。

LSTM算法

图1就是大名鼎鼎的长短记忆模型(Long Short-Term Memory, LSTM),也是递归神经网络(Recurrent Neural Networks, RNN)中最受欢迎的一种形式。 它最早是由Sepp Hochreiter于1991发表原型,然后Jürgen Schmidhuber于1997将该理论基础大功告成。 没错! LSTM是个快要30岁的老算法了,它也是被Hinton发展出的深度学习优化方法救活的一票算法之一。

 

 

图1 LSTM算法

LSTM最大的好处在于它解决了递归神经网络容易发生的梯度爆炸以及梯度弥散问题,它使用了称之为「门控(Gate)」的机制,可以学习开启或是关闭的时机,来控制上下文向量(Context Vector)的流动。 LSTM总共有3个门控,分别是输入门、遗忘门以及输出门。 输入门负责管理新数据是否该纳入,而遗忘门负责管理哪些旧数据该遗忘,输出门则管理哪些上下文该纳入输出。 所以,对女孩子说他的遗忘门总是关着,正是表达永不遗忘的最高礼遇。

Faster RCNN算法

Faster RCNN(图2)是由被粉丝们昵称为RGB的Ross B. Girshick所发表。 自2013年起发表的RCNN三部曲包含RCNN、Fast RCNN以及Faster RCNN。 最终版本Faster RCNN于2015发表,是精确率最高的物体检测算法之一;但可惜它是先定位,再分类的两阶段模型,所以速度不高。

 

 

图2 Faster RCNN算法

物体检测就是不但要知道照片里有什么(物体识别),还需要把它框出来(物体检测)。 Faster RCNN使用了Region Proposal Network,解决了过去算法中以人工方式产生大量候选位置区域(Proposal)的问题;并改用预埋的不同尺寸Anchor,来解决物体不确定尺寸大小与比例的问题。 所以,不管天涯海角,Faster RCNN都能把妹的位置给检测出来。

Auto-Encoder算法

Auto-Encoder(图3)是最古老的深度学习结构之一。 它是一个漏斗型的结构,让高维度数据逐步被降维,到了最窄处,再逐步升维,并且要求输入必须等于输出。 这意味着最窄处被极致降维的结果必须包含重建原始高维数据的一切必要讯息。 我们称这样的高度压缩向量为表征(Representation)或者是嵌入(Embedded),这也是深度学习压缩算法的核心网络结构,由于它没有依赖任何外部卷标,因此被归属为标准的非监督式学习。 所以只要看过妹的一颦一笑,它就能够取得表征,然后完整重现。

 

 

图3 Auto-Encoder算法

WaveNet算法

WaveNet(图4)是来自于Deepmind的得意之作,它也是目前声音生成模型的SOTA(State-of-The-Art)。 WaveNet可以模仿人类或者是各种乐器的声音,他的模仿能力甚至连人类讲话时特有的换气呼吸声都可以模仿。

 

 

图4 Faster RCNN算法

WaveNet的本质是一个一维空洞卷积,一般我们用二维卷积处理二维的影像数据,那么一维的声音数据当然要用一维卷积。 至于空洞卷积(Dilation)则是一种特殊卷积型态,它可以有效地在不增加训练参数的状况下,扩大每个卷积的感知域,这样就可以从细节到大趋势的捕捉声音特性。 所以当然忘不了妹的声音。

Deep Belief Network算法

学深度学习的人千万不能不知道什么是深度信念网络(Deep Belief Network),它是深度学习三大神之首Hinton发展深度学习理论时的第一个深度学习网络(图5)。 所以,我也借用它作为我在大陆创业的公司名字Deepbelief.ai。

 

 

图5 Deep Belief Network算法

深度信念网络每一层都是受限波兹曼机(Restricted Boltzmann Machine, RBM),Hinton拿它来做语音识别以及人脸识别,在那时都获得巨大的成功。 这是神级的深度信念,妹怎能不感动。

DenseNet算法

DenseNet(图6)可以说是这类使用了跳转连接(Skip Connection)的卷积神经网络中的超级进化版,每一个稠密单元(Dense Block)中,每一层卷积神经层除了来自上一层传送的特征外,在之前的「 每」一层都会透过跳转连接将特征直送,这样保证重要特征绝不丢失,所以超级珍惜与妹在一起的所有回忆。

 

 

图6 DenseNet算法

Attention算法

深度学习三大神之一的Yoshua Bengio首次将注意力机制(Attention)运用在机器翻译中,它模仿人类阅读文字的习惯,先逐字读取后,会将注意力放在特定的词汇以产生正确翻译结果,注意力机制可以衡量特别词汇的重要性( 图7)。 若是注意力一直在她身上,多么深情的执着。

 

 

图7 Attention算法

152-Layers ResNet算法

由微软亚洲研究院的两大男神孙剑与何恺明连手发表的ResNet,在2015年利用了一百五十二层前所未有的超深卷积神经网络获得了该年ImageNet的冠军,而且以仅有3.57%的物体识别错误率,终于在视觉领域上击败人类。 一百五十二层残差神经网络,没有最深,只有更深(图8)。

 

 

图8 152-Layers ResNet算法

ResNet算法

残差神经网络(ResNet)利用了跳转链接传递梯度,逐层优化输出值与实际值之间的差异(残差),可以有效地传递梯度避免梯度弥散,也成为现在最主流的卷积神经网络骨干架构(图9)。

 

 

图9 ResNet算法

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭