用脑电波直接交流,会成为现实吗?
扫描二维码
随时随地手机看文章
拉杰什·拉奥(华盛顿大学计算机科学教授、感知运动神经工程中心主任)
安德烈·斯托科(华盛顿大学心理系和学习与脑科学研究所助理教授)
“沃森先生,请到这里来。”138年前,亚历山大·格拉汉姆·贝尔第一次用电话说出了这句话,一场通信革命从此掀起。如今,人们即使身居不同大陆,也能够通过手机、互联网毫无障碍地通话、通信及视频交流。
但语言交流仍有局限。一些抽象概念和情感并不容易通过文字表达。一部分残疾人无法和他人正常交流,尽管他们的思维能力和常人无异。
数十年来,神经科学家一直在寻找解决上述问题的办法。一种叫做脑机接口(brain-computer interface,简称BCI)的技术逐渐成熟,可以让瘫痪病人用脑信号控制电脑光标或假肢。BCI用一些数据处理技术,从病人的脑信号中提取出移动的意图,并将该信息传达给病人希望控制的装置。
多年前,拉奥想到:或许,我们可以用同样的原理实现人脑与人脑之间的通信。想象下,教师可以直接把数学证明传入你的大脑,而不用口头教授;医学系的学生可以从导师的大脑中直接学会复杂的手术技能。这类想法一直是科幻作品中的重要题材,比如《星际迷航》中瓦肯人的心灵融合,以及《阿凡达》电影中的截瘫者控制阿凡达等。
我和拉奥在多次对话中(我们均在华盛顿大学任教)认识到,实现这种技术的最基本的设备已经有了,尽管能实现的功能十分初级。和其他科学家一起,我们正在寻找可以让大脑直接交换思想的技术,使人类突破传统交流手段的桎梏。
让老鼠的尾巴抬起来
我们的想法是使用脑电图技术(简称EEG),即在人的头皮上安置很多电极,记录人的脑电波。记录到的神经活动看似充满噪声,但实际上包含了人类思维的信号。我们希望可以提取出这样的信号,并通过网络发送给第二个人。也就是说,这个信号决定了我们要给接收信号的人的大脑施加怎样的电刺激。因为神经元通过电信号互相交流,我们可以施加电流或磁场(或是用其他技术),以特定方式影响大脑内部的信息传导过程。
简单来说,我们根据一个人的大脑信号,让另一个人的大脑产生特定的神经活动模式。
在用脑电波玩游戏的实验中,一个人想象做一个动作。EEG可以检测到对应的神经活动。这会触发电脑,向第二个人的运动皮层发送一个刺激,让他抬起手按下按钮。
当我们开始测试这个想法时,已经有另外两个神经科学研究组实现了大脑间的信号传输,不过他们的研究不是在人脑上做的。到目前为止,包括我们的研究在内的所有实验均是对这个概念的简单验证:一方扮演发送者,另一方扮演接收者。我们的最终目的是希望实现大脑间的双向通信,但我们相信这两个阶段之间并没有不可逾越的鸿沟。
杜克大学的米格尔·尼科莱利斯(Miguel Nicolelis)率先实现了大脑间的通信。2013年上半年,他发表了一项研究,成功地在身处不同大陆的两只大鼠之间传递了一些简单信号。不多久,另一项用人作为信号发送者的研究也成功了。这项研究中,6个受试者通过EEG装置各自向一只麻醉的大鼠发送命令。哈佛大学医学院的柳承世(Seung-Schik Yoo)和同事还使用了一项新技术——向特定脑区发送穿透颅骨的高度聚焦的超声波。
当人类受试者决定移动大鼠尾巴时,他的脑电波信号会触发超声波装置,向大鼠大脑发射一个超声波脉冲。这个350kHz的脉冲对准了大鼠的运动皮层,因此两秒后,老鼠的尾巴会抬起来再放下。
另一个大脑
和柳承世的工作类似,我们的实验也是用EEG提取控制信号。拉奥实验室有着从EEG信号中提取控制意图的丰富经验,所以这一步很简单。问题在于提取出神经信号以后,我们该如何把它“输入”另一个大脑。幸运的是,本文的另一位作者斯托科和钱特尔·普拉特 (Chantel Prat)当时正在研究经颅磁刺激(transcranial magnetic stimulation,简称TMS)。这是一项已被美国食品及药品管理局批准的技术,可以用于治疗重度抑郁症。这种技术是利用磁场脉冲,诱导大脑特定区域的神经元放电。
实验时,研究人员会在受试者头部附近放置一个绝缘线圈来产生脉冲。线圈通电时,线圈附近的神经元周围会有磁场形成。线圈断电后,磁场就会消失。磁场的突然变化将会使磁场内的神经元产生微弱的电流,促使神经元放电。当这个区域的神经元放电时,与之相连的一系列神经元也会被激活。
当线圈放置在合适位置时,特定的磁场变化会让人做一些不自主的运动。虽然使用TMS的目的通常不是为了让人做不自主的运动,但我们意识到,可以利用这一点让受试者做一些简单动作。在我们的研究中,斯托科的左侧运动皮层上方置有TMS线圈,这里的神经元控制着他的右手动作。经过一系列参数调整,我们找到了刺激控制斯托科手腕的神经元的合理设置,可以让他的手抽动。
我们决定用一个双人电子游戏测试我们的脑脑接口(brain-to-brain interface)。实验室的学生们花了数月时间编写程序、整合各种技术,终于在2013年8月12日,我们成功开展了这个实验。拉奥扮演信息的发出者,斯托科则是接收者。
游戏中一艘海盗船正在向城市发射火箭。玩家需要发射火炮,拦截每发火箭。只有拉奥可以看到游戏画面,但只有斯托科可以按下发射火炮的按钮。所以拉奥需要在恰当的时机,形成“发射”这个想法,然后几秒种后斯托科则会收到这个信息,并按下按钮。
拉奥头上戴了一个贴得很紧的帽子,上面嵌有32个电极,可以测量头部不同位置的电活动变化。在任意时刻,大脑中不同的神经元群的电活动可能都会以不同的频率发生波动。当拉奥想象着移动自己的手时,EEG电极会记录到一个可以被软件检测到的信号。该信号的特征是,电活动的低频波动会有明显下降。一旦检测到这种特征的信号,我们就会通过互联网,发送一个指令,刺激斯托科的大脑。
斯托科自己并不会意识到这个刺激,尽管如此,他的右手还是会运动。刺激会导致他抬手,当手落下时会敲击键盘并在游戏中发射火炮。成功了!这是有史以来第一次有人直接把自己的意图传达到另一个人大脑中,让两个大脑协作完成任务。随着实验进行,我们在游戏中的表现越来越好,最后我们几乎可以100%拦截海盗的火箭。拉奥学会了如何以同一种方式来想象移动自己的手,使电脑可以从EEG数据中找到规律。斯托科同时还发现,除非他感觉到或看到自己的手在动,否则他并不知道自己的手腕在动。
我们后来又在其他几组人类受试者身上重复了这个发现。虽然不是每次结果都很完美,但总体来讲,只要发送者的意图被EEG系统准确检测到了,它就可以通过TMS直接传入接收者大脑中。在这些实验中,每个受试者都知道各自扮演的角色,并且愿意合作解决这个问题。每次海盗的火箭被击中时,发送者就知道对方成功接收到了自己的意念,并按下了开火按钮。我们认为这种有意识的合作是脑脑通信的真正目标,这一特点在动物实验中很难实现。
然而这个简单的实验有一个缺陷:接收者的角色是被动的,他本质上只是借了只手给发送者用而已。接下来我们将设计新的实验,对接收者的其他脑区发送信号,产生有意识的、主动的想法。例如,我们可以向另一个大脑发送视觉信号,而不再是运动信号。接收者会突然看到——比如说一片绿色,然后明白应该做相应的行动。一个研究组已经用和我们相同的技术,在人脑间发送了简单的视觉信息。
这些简单的实验看上去离电影中传输复杂思维的“心灵融合”还差很远,但我们相信,弄清楚如何传送感觉信息和运动信息是十分重要的。对于大脑如何传输感觉和运动信号,我们已经有很多认识,而关于大脑如何产生复杂思想和想法,比如怎样解微分方程、判断哪座城市是拉脱维亚的首都等,我所知尚少。而且很多科学家都认为感觉和运动信息是构筑更复杂知识的基本要素。只有掌握了传送简单信号的技术,我们才能去尝试传送更复杂的概念。
脑脑通信
我们畅想了该技术在未来的几种应用。例如,正在进行康复训练的病人可以从治疗师那里直接接收加速恢复的方法。不能说话的残疾人可以用这种技术直接把自己的想法和感受传递给他们爱的人。
当然,用技术提高大脑能力并不是什么新鲜事。我们用汽车和飞机增强了运动能力,用书籍和网络扩大了记忆容量,用计算机和智能手机提升了分析和交流能力。脑脑通信技术增强的可能会是人类社会性的一面——和他人分享想法的天然需求。
假若科学家和工程师真的有一天实现了真正的脑脑通信,这种技术一定会在道德方面产生深刻的影响。技术是把双刃剑,小到厨房的餐刀,大到基因工程均是如此。
脑脑通信也不例外。很多科幻作品中都有坏人将大脑植入技术滥用在邪恶目的上的情节。现在的世界中各个装置高度互联,安全和隐私被人们高度重视,而在大脑可以互联的未来,这两个问题只会变得更加关键。神经安全研究者需要开发出高度安全的通讯协议,把脑脑通信的风险降到最低。政策制定者也需要通过相关的法律,最大限度减少技术的滥用。
我们必须扪心自问:脑脑通信带来的好处能否抵过它的风险?这种技术会如何改变人类进化的轨迹?社会会因为它变得更好吗?我们的实验提醒人们,或许现在就该开始讨论这些问题了。