液晶显示40年技术发展历程回顾
扫描二维码
随时随地手机看文章
“使用液晶可以制造超薄显示屏”。40多年前的1968年5 月,美国RCA公司在纽约召开的液晶显示屏新闻发布会上的发言震惊了全世界。发现液晶可用于显示的是RCA公司的George Heilmeier,他甚至还表示,“梦想中的壁挂式电视只需数年即可实现”。自那之后,日本、英国、瑞士、德国的显示屏研发人员都开始参与液晶面板的开发工作,全球性开发的帷幕正式拉开。
经历4个阶段发展为液晶电视
实现液晶显示屏的实用化并不容易(见图1)。当时,液晶的使用寿命和可靠性等基本问题都未能解决,使用不到1个小时显示就会消失,更别提要用液晶制造电视了。
图1 液晶显示屏的发展历经4个阶段
之所以会存在使用寿命和可靠性方面的问题,主要是因为将直流电压加载到液晶上时,液晶材料及电极会发生氧化还原反应而变质。虽然也可以采用交流电来驱动液晶,但是显示性能较差。最终解决这一问题的是夏普公司。该公司发现,如果在液晶材料中加入离子性杂质,使其导电率升高,就可以采用交流驱动获得良好的显示特性。利用这项技术,1973年5 月,夏普公司推出全球首款液晶应用产品——使用液晶显示屏作为显示部件的小型计算器EL-805。
夏普公司的液晶计算器上采用的液晶显示屏是由RCA公司生产的DSM(动态散射模式) 液晶,而不是目前常见的TN(扭曲向列)模式液晶。但是,要采用DSM制造液晶电视是很困难的,这是因为DSM的点阵显示扫描线在数量方面存在一定的限制。1971年出现的TN 模式解决了这个问题。TN液晶能起到快门的作用,通过使液晶分子在电场中移动,就可以控制光的开/关。目前,几乎所有液晶显示屏都在采用这个工作原理。
虽然TN模式可使点阵显示的扫描线数量大为增加,但当扫描线增加到60条左右时, 图像就会发生变形。对于这个问题,最初找出原因并提出解决方案的是日立制作所的川上英昭。他发现,扫描线的最大数量取决于电压-透过率曲线的上升沿。于是,各机构开始竞相研究如何提高电压-透过率曲线的上升沿。随之出现了将液晶的扭曲角从TN模式下的90度增大到270度的STN(超扭曲向列) 模式。1982年,英国皇家信号与雷达研究院(RSRE)发明了STN液晶。1985年,瑞士Brown Boveri公司(BBC)试制出扫描线数量达到135条的STN液晶显示屏。
然而,即使引入STN模式,还是很难制造液晶电视,这是因为STN液晶仍然存在对比度较低、很难显示细微灰阶的问题。突破这一壁垒的,是通过TFT(薄膜场效应晶体管)来控制各像素的有源矩阵驱动技术。与以往的单纯矩阵驱动不同,有源矩阵驱动技术可以独立控制各像素,从而防止因受到周围像素的影响而产生的交调失真,因此可以显示高对比度与细微灰阶。
与彩色CRT竞争的时代
要想制造TFT液晶电视,在大面积玻璃基板上形成硅膜的技术和彩色显示技术都不可或缺。
在硅膜的形成技术方面,为太阳能电池开发的非晶硅(a-Si)在当时已经实用化。那时, 石油危机将导致能源危机的说法十分流行,所以太阳能电池作为能源电池备受关注,非晶硅的开发非常活跃。继英国邓迪大学于1979年宣布试制出非晶硅TFT之后,日本及欧洲的企业及研究机构纷纷发布了非晶硅TFT驱动显示屏的开发成果。
在彩色显示技术方面,日本东北大学的内田龙男于1981年发布了并置加法混色法,通过有序排列的三色滤光片来实现彩色显示,也就是彩色滤光片方式。在这些开发成果的推动下,1986年,3英寸非晶硅TFT彩色液晶电视上市,1988年,业界开始开发用于14英寸电视的非晶硅TFT彩色液晶显示屏。特别是夏普公司推出的14英寸液晶屏,实际验证了实现大屏幕非晶硅TFT液晶屏的可能性,引起众多厂商纷纷对此进行投资。
如上所述,虽然TFT液晶已经开始朝着“梦想的壁挂式电视”迈进,但它的全面应用却是从PC的彩色显示器开始起步的。1988 年出现了用于IBM公司与东芝公司的PC产品的10.4英寸TFT液晶屏。1991 年,第1代320mm×400mm基板生产线投产,夏普公司在这种第1代基板上切割出4片8.4 英寸面板。
基板的大型化推动了液晶产业的发展
玻璃基板的大型化对之后液晶产业的发展做出了重大贡献。随着基板的大型化,TFT 液晶面板的种类出现飞跃性的增长,应用范围也不断扩大(见图2)。
图2 基板的大型化扩展了液晶屏的种类及应用范围
1993年,NEC、东芝、夏普三家公司开始采用第2代的360mm×465mm基板。在这种尺寸的基板上可以切割出4张9.4英寸的面板。紧随其后进入该产业的日立制作所、松下电器产业及三星电子等厂商则采用了370mm×470mm基板,可以切割出4张更大的10.4英寸面板。
对“后第2代”的摸索从1994年就已经开始。1995年,可切割出4张11.3英寸面板的400mm×500mm基板生产线(第2.5代)投产。1995年底~1996年,厂商们纷纷开始采用可切割出6张12.1英寸面板的550mm×650mm左右的基板(第3代)。1997年,可获得6张13.3英寸面板的590mm×670mm基板生产线投产。1998年,可切割出6张14.1英寸面板的600mm ×720mm基板生产线投产。
1998年,液晶显示器的实际售价已跌破10 万日元(约合7000元人民币),液晶显示器获得市场普及的大幕拉开。1999年,三星公司开始采用600mm×720mm基板制造用于显示器的17英寸液晶屏。2000年~2001年,随着680mm ×880mm与730mm×920mm第4代基板的出现,用于大屏幕显示器的液晶面板的生产效率得到大幅提高。在这样的发展态势下,显示器的成本不断降低。1998年,液晶显示器的出货量约为100万台,到2001年已增至1000万台, 2005年甚至突破了1亿台。
技术竞争白热化
在液晶显示器市场刚开始启动的1998年,当时的夏普公司社长(现任董事长)町田胜彦的发言震惊了整个行业。他表示: “到2005年,夏普在日本国内销售的电视将全部采用液晶屏。” 当时,液晶电视并未普及,在夏普公司内部对于彩色液晶屏也并没有十足的把握。但是,这一句话成为液晶电视扫荡市场的导火索,那以后,液晶电视以超乎町田胜彦预想的惊人速度推广开来。在此过程中,液晶与PDP(等离子)、SED(表面传导电子发射显示)等技术展开了激烈的竞争(见图3)。[!--empirenews.page--]
图3 三次交锋后TFT液晶控制了市场
制造壁挂式电视的挑战变得具体化,TFT 液晶面板与PDP面板的开发竞争可以追溯到“町田发言”3年之前的1995年。当时,上世纪80年代后期从PC市场撤出的PDP厂商纷纷宣布将涉足壁挂式电视业务。30英寸~40英寸面板的开发成果在那时也相继发布。PDP阵营主张“液晶面板的尺寸应在20英寸以下”, TFT液晶面板阵营则对此表示坚决反对。例如,夏普于1995年将两张21英寸面板接在一起,开发出相当于28英寸的TFT液晶面板,表示出欲制造壁挂式电视的意图。但在当时, 无论是PDP面板还是TFT液晶面板,在显示性能上都明显不如CRT,制造成本也过高。因此,两大阵营的初期目标都是要改善显示性能,力争接近CRT的水平。
TFT液晶面板与PDP的第二次交锋发生在2001年。日立制作所推出了大大低于100万日元(约合7万元人民币)、实际售价为60多万日元(约合42000元人民币)的32英寸PDP电视, 当时这款电视在市场上成为热销产品。TFT液晶面板阵营则致力于继续扩大面板尺寸,夏普公司推出30英寸的液晶电视。在面板开发上,三星公司也发布了40英寸的试制面板。但是,PDP与TFT液晶仍然无法完全取代CRT 电视。PDP在支持全高清与低功耗方面、TFT 液晶面板在响应速度等视频显示性能上都存在很大的挑战。
之后,两大阵营为了解决各自的问题而继续进行开发。到2005年~2006年,又发生了第三次交锋。这时两大阵营的电视画质都已得到大幅改善,各厂商纷纷开始加大投资。2005 年,在全球同步推出PDP电视的松下电器产业宣布将继续投资尼崎生产工厂(兵库县)。TFT 液晶面板阵营方面,夏普、三星以及中国台湾地区的厂商开始投资建设第7代与第8代工厂, 扩大了电视面板的产量。经过激烈的投资竞争之后,PDP阵营的厂商开始陆续撤退,到2008 年只剩下三家公司。自此,TFT液晶面板确立了电视领域的核心地位。
参与壁挂式电视开发竞争的不光是TFT液晶面板与PDP。2004年,SED面板高调宣布参与竞争。佳能与东芝公司合资成立了SED公司,并发布了SED电视业务计划。但在2006 年,SED电视的投产日期从最初计划的2006年春推迟到2007年第4季度。到2007年,又由于专利许可的问题,公司宣布再次推迟SED电视的上市时间。
2007年,OLED取代SED加入开发竞争。索尼公司推出11英寸的OLED电视。不过,由于大屏幕技术不够成熟,所以目前OLED电视尚处于开发之中。OLED面板的量产始于1997 年的小屏幕单色产品。CRT与液晶面板从开始研发到市场正式启动为止都花了20年~30年的时间,所以,OLED面板能否形成气候还将取决于今后的开发情况。
壁挂式电视的后继者
显示器领域的技术人员一直以来都有三个梦想:壁挂式电视、3D显示器及电子纸(见图4)。
图4 显示技术人员的三大梦想
壁挂式电视目前已经实现,松下等厂商已公布了下一步的开发方向,即嵌入墙壁的“墙面电视”。今后,为了开发出更大的屏幕,必须进一步降低耗电量。因此需要开发全新的显示原理,如不再采用导致光利用效率低下的偏光板与彩色滤光片。
3D显示器的关键在于开拓杀手级应用。目前,在家庭影院及数字标牌(digital signage) 领域已经出现了完全不同于现有2D显示器的全新收视方案。
电子纸方面则需要彻底改变此前以CRT 为目标的开发策略。纸的特点是薄、轻、可弯曲、可书写、视认性较好。在进行开发之前,需要根据目标应用制定相应的开发策略。 (编辑:小舟)