【技术讲座】耐氧耐水的有机EL元件“iOLED”(下)
扫描二维码
随时随地手机看文章
iOLED的研究中最大的课题是,开发合适的EIL材料。把ITO作为透明阴极使用时,一般来说从ITO向有机层直接注入电子非常困难。这是因为,ITO功函数的值与接收有机层电子的能级——最低未占轨道(LUMO)之间的能差较大。ITO的功函数约为5eV,而普通有机EL元件用电子运输材料的LUMO能量约为3eV,因此表面存在约2eV的电子注入势垒。
普通OLED是从ITO向HTL注入空穴,这种情况下,接收HTL空穴的能级——最高占有轨道(HOMO)的能量约为5.5eV的材料较多,与ITO功函数的能差较小。
如上所述,要想从ITO高效向有机层直接注入电子,需要合适的EIL。为寻找这种EIL材料,我们准备了多种EIL材料,评测了iOLED对各材料的特性差异。结果发现了适合iOLED的EIL材料,成功开发出了发光效率与普通OLED相同的iOLED。另外,对报告案例还比较少的iOLED的大气稳定性也进行了评测。而且试制了采用iOLED的显示器。
特性随EIL变化
图5是改变EIL材料时的iOLED特性。采用EIL I~III的iOLED分别为iOLED-I~III。发光材料采用发红色光的磷光材料Ir(piq)3。
图5:iOLED的特性随着EIL的选择而变化
本图为采用三种EIL材料时的iOLED特性变化。(a)为亮度-电压特性,(b)为外部量子效率对亮度的依赖性。发光材料采用磷光材料Ir(piq)3,获得了15%左右的高外部量子效率。
从中可以看出,iOLED的特性因EIL的选择而大不相同。从特性来看,iOLED-I的最高亮度只有5cd/m2(图5(a))。可以说这是因为,采用EIL I的话,很难从阴极ITO向有机层注入电子。而iOLED-III以低加载电压获得了高亮度,由此可见,采用EIL III促进了从ITO向有机层注入电子。
另外还可以看出,外部量子效率也因EIL的选择而大不相同(图5(b))。iOLED-I的外部量子效率还不到1%,而iOLED-II达到了约11%,iOLED-III达到了约15%。有报告显示,发光材料采用Ir(piq)3的普通OLED的外部量子效率约为11%,因此,iOLED-III获得了普通OLED同等以上的发光效率。
经过250天也未出现劣化
另外,我们还评测了普通OLED、iOLED-II和iOLED-III三种元件的耐氧性和耐水性。普通OLED的发光层采用普通的绿色萤光材料——三(8-羟基喹啉)铝(Alq3),EIL采用氟化锂(LiF),阴极采用铝。
我们利用玻璃框和阻挡膜把这些有机EL元件封装在氮气(N2)中评测了其耐性(图6)。
图6:利用普通阻隔性能的薄膜封装元件
为观测发光面的劣化,采用阻挡膜进行封装的封装方法模式图。玻璃框与基板之间以及玻璃框与阻挡膜之间用紫外线硬化树脂粘接。大气中的水分和氧气有微量透过阻挡膜渗入,因此可观测对有机EL元件造成的影响。
我们把封装的有机EL元件放置在大气中,观测了发光面随时间的变化(图7)。制作有机EL元件的基板与玻璃框之间,以及阻挡膜与玻璃框之间利用紫外线(UV)硬化树脂粘合。
图7:确认经过250天后也没有劣化的有机EL元件
把普通OLED、iOLED-Ⅱ和iOLED-Ⅲ三种有机EL元件放置在大气中,定期为元件加载电压,用显微镜观测发光面。
此次采用的阻挡膜的水蒸气透过率为10-4g/m2/day左右,这种程度的阻挡层可大面积均匀成膜。通过采用这种封装构造,能观测大气中微量的氧气和水分渗入有机EL元件后,对元件劣化产生的影响。
先来看普通OLED的劣化,从第六天开始就明显观测到了被称为“暗斑”的黑点,约100天后,只有一半左右的面积发光了。暗斑的产生原因估计主要是氧气和水分造成了阴极劣化。
下面来看iOLED-II的结果,虽然劣化速度比普通OLED慢,但放置100多天后还是出现了明显的暗斑。而iOLED-III放置250多天也基本没出现劣化,现在仍在继续观测。
虽然一直说iOLED比普通OLED的耐氧性和耐水性强,但此前并未报告过这一点的验证结果。此次通过采用阻挡膜进行评测确认了这一点。不过,并不是所有iOLED都不容易劣化,从iOLED-II的结果可以发现,其大气稳定性取决于电子注入材料的选择。此次通过采用EIL III,在获得高发光效率的同时,还确认了比较高的大气稳定性。可以说,EIL III等材料适合用于柔性显示器。
可制作显示器
此次开发的iOLED还可用于显示器。实际上,为验证此次的iOLED在显示器上的适用性,在采用InGaZnO TFT的背板上制作了iOLED,进行了视频显示(图8)。基板采用玻璃,画面尺寸为5英寸,像素为320×240像素(QVGA:红色单色),帧频为60Hz。确认了画面整体的视频显示。亮度约为100cd/m2。虽然能看到线欠陷,不过这是因为布线短路。
图8:采用iOLED试制5英寸有机EL显示器
在TFT采用n型半导体InGaZnO的背板上形成iOLED,试制了红色单色的显示器。
今后将挑战柔性化
综上所述,通过不使用对氧气和水分表现为活性的材料,实现了耐氧和耐水的有机EL元件。此次,发现了适合阴极采用惰性电极ITO的“iOLED”的EIL材料。优化后的磷光性iOLED的最大外部量子效率约为15%,获得了非常高的值。另外,利用阻挡膜评测大气稳定性后发现,普通OLED约6天就观测到了劣化,而优化后的iOLED在相同条件下经过约250天仍未出现劣化。此外,还利用新开发的iOLED,试制了5英寸有机EL显示器,确认了在显示器上的适用性注1)。
注1) 本研究的一部分是作为日本总务省的委托研究“为实现终极节电显示器而实施的高效率、长寿命有机EL元件的研究开发”实施的。
此次利用玻璃基板验证了在显示器上的适用性,今后预定试制采用iOLED的柔性显示器。(特约撰稿人:深川 弘彦,NHK放送技术研究所研究员;清水 贵央,NHK放送技术研究所专职研究员;有元 洋一,日本触媒研究员;森井 克行,日本触媒首席研究员) [!--empirenews.page--]