当前位置:首页 > 智能硬件 > 半导体
[导读]美国华盛顿大学圣路易斯分校(Washington University in St. Louis)的研究人员,打造出一种可望成为微处理器关键元素的新技术,它是使用光而非电来进行资料处理。该研究团队已经开发了一套光学谐振器(resonator)系统,

美国华盛顿大学圣路易斯分校(Washington University in St. Louis)的研究人员,打造出一种可望成为微处理器关键元素的新技术,它是使用光而非电来进行资料处理。该研究团队已经开发了一套光学谐振器(resonator)系统,能增强光线针对某个方向的传导,并将光线往其他方向的传导削弱到几乎看不见;此外该系统也微缩到能放进一颗矽晶片内的程度。

上述技术与电气系统内的简易二极体原理相同,是使用量子力学的扭转(twisting)概念,不只让光线只沿着单一方向传导,而且看来是装置所输出的能量高于输入的能量。在一个甜甜圈形状的元件中有两个微谐振器来回反射光线,其中之一倾向损失能量,另一个则是提升能量;当损失的能量相当于特定波长的增益(gain),系统就会产生相变化,谐振器作用也会逆转。

根据华盛顿大学研究人员在新出版4月号《Nature Physics》期刊上发表的论文:「谐振器之间的时间性关系(temporal relationship)逆转了,能量损失变成增加、增加变成损失。」这样的结果能打造出比目前电气线路更细微之光学通道,所需要的能量也更低,而且能采用目前的标准半导体电路设计技术。

芯片0' title='美科学家催生用更低能量就能驱动的光学芯片0' />

在传统光学二极体中,从某个方向输入的光线会被传导出去,而从另一个方向输入的光线则会被拦截;华盛顿大学研究人员开发的新一代光学二极体,则是利用宇称(parity time symmetric)性微谐振器所制作,当某个谐振器的能量损失,能由另一个谐振器的能量增益来平衡

「我们相信这个发现将有益于电子学、声学、电浆子光学(plasmonics)以及超材料(meta-materials)等领域;」负责监督此研究的华盛顿大学实验室总监Lan Yang表示:「以宇称性(parity time symmetry,PT symmetry)方式来耦合所谓的损、益元件,能催生像是隐形装置、消耗更少电力的更强雷射,甚至是能“看”到单一颗原子的探测器等先进技术。」

华盛顿大学的论文主要作者、Yang团队研究生Bo Peng表示:「目前我们以二氧化矽(silica)来打造新一代光学二极体,这种材料在电信通讯波长中的耗损很小;这种技术概念也可以扩展至采用其他材料制作的谐振器,以实现更佳的CMOS制程相容性。」

用一个比喻来形容,这种元件的运作原理与英国圣保罗大教堂(St. Paul's Cathedral)的耳语廊(Whispering Gallery)有点类似──当有人在走廊的某一端小声讲话,另外一端的人能清楚听到,但站在发声端附近的反而听不见。

在理论上,这种元件是比较有问题的;它是利用物理学的宇称概念,也就是一个封闭空间中的能量可能不等于内部实际粒子内能量的实际与潜在能量。(编按:更多关于宇称概念的解释请参考原文后半段的解释,或请教维基百科与Google大神!)

该元件反射两个微谐振器之间的光束,其中之一能量耗损、另一个增加,当某个谐振器的增益等同于另外一个的耗损,系统的宇称就会被打破;华盛顿大学的论文指出:「此时系统即使在非常弱的输入电力之下,也会呈现强劲的非线性行为──输入光线的增益强度会呈现非常陡峭的直线斜率,也就是光线只会由单一个方向传导。」

此时一个明显的结果是,发出自元件的光束强度比输入该元件的能量更高;打造谐振器的研究人员Kaya Ozdemir 表示:「时间反演对称(Time reversal symmetry)是一个基础物理原则,指的是如果光线会沿着单一方向传导出去,那一定也能从另一端传导回来;但在新的光学二极体内,这个原则就不成立了。」

Ozdemir指出,工程师传统是以磁光学(magneto-optics)或是高磁场来打破时间反演对称,但华盛顿大学团队是透过打破宇称(宇称不守恒)所产生的强劲非线性来达成;当输入功率只有1mW时,能让单一方向的光线传输强度提高十七倍,但没有从另一端过来的光线传输;而如果不使用宇称概念搭配谐振器的结构,不可能达到这样的结果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭