电子显微镜破解划蝽变身“潜艇”之谜
扫描二维码
随时随地手机看文章
自然界中很多昆虫的翅面、腿部及某些植物的叶面存在很好的超疏水性。基于超疏水性研究仿生制备的材料在防腐抗污、减阻降噪、防水抗菌、自清洁等领域有广泛的应用前景。
经过两个月的仔细观察,河西学院石彦龙课题组发现,划蝽在水下游动时扁状的后足不断摆动,靠后足与水的反作用力将自身向前、向下推进。当后足停止摆动而呈“一”字型支开时,后翅优异的超疏水性能使其浮力增大,身体会由水下垂直向上浮出水面。当划蝽下潜于水底时,后足呈“一”字型支开,靠中足将自己的身体附着在水底的淤泥、石块或植物上。
通过扫描电子显微镜观察划蝽后翅面,研究人员发现其翅面分布有大量的乳突,乳突直径约为80纳米,乳突之间相距50~200纳米,乳突之间还有大量“大头针”状的纳米棒,纳米棒顶细根粗,直径为50~100纳米,棒与棒之间相距300~1000纳米,高约为600纳米。
此外,由于昆虫翅面的主要成分为低表面能材料的蛋白质、脂类和几丁质,复合阶层结构及低表面能物质的协同效应使划蝽后翅翅面表现出优异的超疏水性。研究证实,这种超疏水性是使其浮力增大的主要因素。水滴在划蝽后翅翅面的接触角达到159°,滚动角约为8°。后翅面的这种复合结构使其表面有更大的比表面积,超疏水翅能有效吸附空气,使翅面在水下时形成空气膜。
研究人员据此将划蝽喻为“自然界的潜水艇”,认为“相关研究将为研发适应性强、机械强度高、疏水性能稳定的超疏水材料提供有益指导。这种机器虫在侦察勘测、水质监控、液面清污、水下打捞等领域都具有广泛的应用前景。同时,我们期望该研究能对未来潜艇的设计制造提供借鉴和启发。”