当前位置:首页 > 电源 > 功率器件
[导读]UCC39421/2是高效多模式高频PWM控制器。

摘要:UCC39421/2是高效多模式高频PWM控制器。文章简要介绍了UCC39421/2的功能特点,详细论述了UCC39421/2的构成原理及引脚功能,给出了UCC9421/2控制器的应用方法及应用电路。

    关键词:多模高频 PWM控制 DC/DC变换 UCC39421/2

1 UCC39421/2的功能特点

UCC39421/2是一种高效低功率DC/DC转换器。它在很宽的工作电源下具有很高的效率,并可提供编程上电复位功能,该芯片带有独立的低压检测比较器,同时具有脉冲调制、限流和低电流关断(5μA)功能,可广泛应用于蜂窝电话、录呼机、PDAs以及其它手持设备中。

UCC39421/2具有以下特点:

*采用高效升压单端初级电感控制,SEPIC或回扫(反向升压)拓扑结构,输入电压既可高于也可低于输出电压;

*输入电压低(最小为1.8V);

*能驱动外部FETs以获得较大电流;

*具有高达2MHz的振荡频率;

*可同步操作;

*具有可编程变频模式,可优化功率和效率;

*具有脉冲调制限流功能;

*功耗极低,睡眠模式下的供电电流为150μA,关断模式下的供电电流仅为5μA。

图1 UCC39421/2结构方框图

2 构成原理及引脚功能

2.1 构成原理

UCC39421/2内部由电荷泵电路、PWM振荡器、导通控制电路、PWM电路、限流控制电路、低功率模式控制电路、斜率补偿电路、PFM模式控制电路、误差放大器、电池低电压比较器、复位电路、1.24V基准源电路以及比较器和逻辑电路等构成,其内部结构如图1所示。

2.2 封装及引脚功能

UCC39421/2采用双列20/16引脚封装,其引脚排列如图2所示。各引脚功能如下:

COMP:误差放大器输出端。应用时此端与地之间应连接一阻容串联补偿网络;

CHRG:N沟道MOSFET栅极驱动输出。应用时此端可直接与MOSFET栅极相连;

CP:电荷泵输入端。当使用电荷泵时,CP与泵电容相连;不使用电荷泵电路时,CP接GND;

FB:误差放大器反馈信号输入端。应用时此端通常连在VOUT与GND之间的电阻分压器上;

GND:控制器信号地;

ISENSE:电流检测放大器输入;

LOWBAT:比较器输入。当VDET引脚电压高于1.25V时,此端输出为低电平;

    PFM:PFM(脉冲频率调制)模式门限编程引脚。将此脚连到FB或VOUT引脚的电阻分压器上可设置PFM的门限。不用此功能时,应将PFM与GND相连;

PGND:控制器功率地;

RECT:同步整流器输出。使用时此脚可与P沟道或N沟道MOSFET的栅极直接相连,亦可通过一个廉价的电阻与MOSFET的栅极相连;

RSEN:同步整流器转换端。在升压模式,此端通过一只1kΩ电阻与二只MOSFET管相连,并与电感的一端相连;在回扫和SEPICF时,此端通过只1kΩ电阻与同步整流器MOSFET的漏极和耦合电感的付边绕组连接处相连;

RSADJ:复位延时电容连接端。使用时从此脚到GND应连一个延时电容(UCC39421无此引脚);

RSEL:同步整流使用N沟道或P沟道MOSFET选择端。当RSEL与GND相连(低电平)时,同步整流器使用N沟道MOSFET;当RSEL与VIN相连(高电平)时,同步整流器用P沟道MOSFET;

RESET:复位信号输出端(UCC39421无此脚);

    RT:振荡电阻连接端。应用中,此端到GND之间应连一电阻,以决定内部振荡器的振荡频率。振荡电阻RT与内部振荡器的振荡频率f0之间的关系为:

f0(MHz)=50/RT(kΩ)

SYNC/SD:同步/关断输入。其作用是使控制器的开关频率与内部时钟频率同步或关闭控制器。

VPUMP:电荷泵输出。应用时此脚与地位连接一只1μF电容。

VOUT:控制器输出引脚;

VIN:电源输入引脚。应用时此脚与GND之间应连一只0.1μF的去耦电容;

VDET:低电池电压检测输入端(UCC39421无此引脚)。

3 应用

3.1 拓扑结构与同步整流器

UCC39421/2可用来构成BOOST、Flyback及SEPIC拓扑。此时,该控制器可在Vin=1.8~8V下工作。应用中可根据输入电压和输出电压选择合适的拓扑类型,表1列出了UCC39421/2的VIN、VOUT和拓扑之间的关系。

表1 输入输出电压与拓扑的关系

电池类型 电池数目 VIN范围 VOUT(V) 拓扑结构
碱性或镍镉、镍氢 2 1.8V~3.0V 3.0<V<8.0 升压
3 2.7V~4.5V 2.5<V<3.9 回扫或SEPIC
4.5<V<8.0 升压
V>8.0 非同步升压
锂离子 1 2.5V~4.2V 2.5<V<3.6 回扫或SEPIC
4.2<V<8.0 升压
V>8.0 非同步升压

UCC39421/2既可驱动N海道MOSFET,亦可驱动P沟道MOSFET同步整流器。当RSEL引脚与GND相连时,RECT脚可为N沟道MOSFET提供驱动输出信号;而当RSEL脚与VIN相连时,RECT脚则为P沟道MOSFET提供驱动输出信号。其拓扑类型、VOUT与同步整流器的关系如表2所列。

表2 拓扑类型、VOUT与MOSFET的关系

拓 扑 VOUT(V) 同步整流器
升 压 3.0<V<8.0 P沟道MOSFET
V<4.0 N沟道MOSFET
V>8.0 非同步升压
回 扫 2.5<VV3.0 N沟道MOSFET
3.0<V<8.0 N沟道MOSFET
SEPIC 3.0<V<8.0 P沟道MOSFET

3.2 典型应用电路

图3所示是UCC39422的典型应用电路,图中给出了外围元件的连接关系。对于UCC39421来说,它与UCC39422相比,仅少了一个独立低电池电压检测电路复位电路,其余均相同。

在图3电路中,与UCC39422脚11(VDET)相连的R1、R2构成的电阻分压器的作用是检测电池的低电压。

图5 运用N沟道MOSFET同步整数流器不带电荷泵输入的回扫变换器

    3.3 升压变换应用电路

图4是UCC39421用N沟道MOSFET作同步整流器的升压变换器电路。

在图4中,输入电压VIN的范围为1.8V~3.2V,输出电压Vout为3.3V,这与表1所列的升压拓扑模式相符。RSENSE为电流感测电阻,DPUMP、CFLY组成的电荷泵电路可使CFLY上升的充电电压达到VOUT-VDIODE。CPUMP是电荷泵储存电容器。

3.4 回扫变换应用电路

图5所示是UCC39421运用N沟道MOSFET作同步整流器,且不带电荷泵输入的回扫变换电路原理图。图中,L1初次级的匝比为1:1。此拓扑的优点在于VOUT可以高于也可以低于VIN。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭