当前位置:首页 > 电源 > 功率器件
[导读]同样亮度下LED 光源耗电量仅为普通白炽灯的十分之一,而寿命却可以延长100 倍。但其寿命很大程度上决定于驱动电源,因此一种可靠的、转换效率高的、寿命长的LED 驱动电源对于LED 光源至关重要。  本文设计了一种LE

同样亮度下LED 光源耗电量仅为普通白炽灯的十分之一,而寿命却可以延长100 倍。但其寿命很大程度上决定于驱动电源,因此一种可靠的、转换效率高的、寿命长的LED 驱动电源对于LED 光源至关重要。

  本文设计了一种LED 光源驱动电路,介绍了设计原理和方法,采用电压和电流双环反馈,能够输出恒定的电压和电流,并且具有开环保护负载的功能,能有效提高LED 光源的使用寿命。

  1 TNY279 芯片介绍

  本设计采用TNY279 电源芯片作为开关电源的控制芯片,TNY279 电源芯片在一个器件上集成了一个700V 高压MOSFET 开关和一个电源控制器,与普通的PWM 控制器不同,它使用简单的开/关控制方式来稳定输出电压。控制器包括一个振荡器、使能电路、限流状态调节器、5.8V 稳压器、欠电压即过电压电路、限流选择电路、过热保护、电流限流保护、前沿消隐电路。该芯片具有自动重启、自动调整开关周期导通时间及频率抖动等功能。

  2 电路的工作原理分析

  电源的核心部分采用反激式变换器,结构简单,易于实现。整体设计电路图如图1。

  2.1 输入整流滤波电路

  考虑到成本、体积等因素,改善谐波采用无源功率因数校正电路,主要是通过改善输入整流滤波电容的导通角方式来实现。具体方法是在交流进线端和整流桥之间串联电感,如图1 所示C1、C2、L1、L2 组成一个π 型电磁干扰滤波器,并使用填谷电路填平电路,减小总谐波失真。填谷电路由D1、D2、、D3、C3、C4、R3 组成,限制50Hz 交流电流的3 次谐波和5 次谐波。

  

 

  图1 电源整体设计电路

  经整流及滤波的直流输入电压被加到T1 的初级绕组上。U1(TNY279)中集成的MOSFET 驱动变压器初级的另一侧。二极管D4、C5、R6 组成钳位电路,将漏极的漏感关断电压尖峰控制在安全值范围以内。齐纳二极管箝位及并联RC 的结合使用不但优化了EMI,而且更有效率。

  2.2 高频变压器设计

  TNY279 完全可以自供电的,但是使用偏置绕组,可以实现输出过压保护,在反馈出现开环故障时能够保护负载,有效地减少对LED 光源的产生的损害,在本设计中采用偏置绕组,如图1,同时可由更低的偏置电压向芯片供电,抑制了内部高压电流源供电,在空载时功耗可降低到40MW 以下。Y 电容可降低电磁干扰。

  2.3 反馈电路设计

  次级采用恒流恒压双环控制。NCS1002 是一款恒流恒压次级端控制器。如图2 所示,它的内部集成了一个2.5V 的基准和两个高精度的运放。

  电压基准和运放1 是电压控制环路的核心。运放2 则是一个独立运放,用于电流控制。在本设计中,电压控制环路用于保证输出电压的稳定,电流反馈控制环路检测LED 平均电流,即电路中R17 上的电流,将其转换成电压和2.5V基准比较,并将误差反馈到TNY279 中来调整导通。

  

 

  图2 NCS1002 芯片内部结构

  具体的工作原理是:NCS1002 调节输出的电压值,当输出电压超过设定电压值时,电流流向光耦LED,从而下拉光耦中晶体管的电流。当电流超过TNY279 的使能引脚的阈值电流时,将抑制下一个周期,当下降的电压小于反馈阈值时,会使能一个开关周期,通过调节使能周期的数量,对输出电压进行调节,同样,当通过检测到R16上的电流即输出电流大于设定的值时,电流通过另一个二极管下拉光耦LED 中晶体管的电流,达到抑制TNY279 的下一个周期的目的,当输出电流小于设定电流时会使能一个开关周期,通过这样的反馈调节机制,能使得输出的电压和电流都处于稳定的状态。

  当反馈电路出现故障时,即在开环故障时,偏置电压超过D9 与旁路/多功能引脚电压时,电流流向BP/M 引脚。当此电流超过ISD(关断电流)时TNY279 的内部锁存关断电路将被激活,从而保护负载。由于使用了偏置绕组将电流送入BP/M引脚,抑制了内部高电压电流源,这样的连接方式将265VAC 输入时的空载功耗降低到40MW有效的降低功耗。

  3 电路的参数

  3.1 输入输出参数

  输入电压(AC): 85~265 V

  频率:50Hz

  输出电压: 12V

  输出电流:1.67A

  输出功率:20W

  3.2 变压器参数计算

  在最低电网电压为85V 时,最小的直流输入电压V MIN ,可通过下式计算:

  

 

  式中,ACMIN ,PK V 是最小输入电压的峰值,W IN 是电容的放电能量,其中:

  

 

  放电能量IN W 等于需要的峰值输出功率OPK P 和放电时间/ 2tLT的乘积:

  

 

  式中, c t 为整流二极管的导通时间,假设为3 ms,L T 为20 ms,η 为转换效率。计算得IN V 大约为88 V。[!--empirenews.page--]在设计变压器时,考虑到开关电源在整个范围内其磁通是不连续的。在最小输入电压时的最大占空比为 DMAX = 0.5。

 

  初级感应电动势R V 是通过初级线圈的次级电压的感应值,可以由下式计算:

  

 

  VDS可以忽略,则VR=88V。

  初级电流的最大峰值PKMAX I 和最大输出功率POMAX 成正比:

  

 

  可计算得IPKMAX =1.16A。

  初级电感L1的计算。初级电感可以由回扫变压器的能量方程确定:

  

 

  开关频率大约132 kHz,所以计算得L1 = 891μH。

  在不连续模式下,磁芯最大磁通密度通常受磁芯损耗的限制,为了使磁芯损耗保持在可接受的范围内,对于本设计采用EF25 的磁芯,选择BMAX= 0.4 特斯拉来计算初级线圈的匝数N1。

  

 

  式中, MIN A 是磁芯的最小横截面积。对于EF25,AMIN = 52.5 mm2,N1 = 85。

  同样根据设计要求计算得:

  次级N2 = 8,采用两个并联绕组;偏置绕组N3 = 9,采用两个并联绕组。

  3.3 变压器的绕制

  如图3 所示是变压的初级、次级和偏置绕组的绕制示意图。

  

 

  初级绕组以引脚2 作为起始引脚,绕85 圈(x1 线),在2 层中从左向右。 在第1 层结束时,继续从右向左绕下一层。在最后一层上,使绕组均匀分布在整个骨架上。 以引脚1 作为结束引脚,添加1 层胶带以进行绝缘。

  偏置绕组以引脚4 作为起始引脚,绕9 圈(x 2线)。沿与初级绕组相同的旋转方向进行绕制。使绕组均匀分布在整个骨架上。 以引脚3 作为结束引脚,添加3 层胶带以进行绝缘。

  次级绕组以引脚7 作为起始引脚,绕8 圈(x 2线)。 使绕组均匀分布在整个骨架上。沿与初级绕组相同的旋转方向进行绕制。以引脚6 作为结束引脚,添加2 层胶带以进行绝缘。

  4 结论

  基于TNY279 的大功率LED驱动电源电路反馈环节采用恒压恒流双环的设计,保证输出电压和输出电流的恒定,同时在开环故障下能够自动关闭,保护负载,有效的减少了对LED 光源的损害,提高LED 的使用寿命。同时转换效率也在83%以上,并满足国际标准中对谐波含量的要求。经验证电路能够输出预期的效果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭