当前位置:首页 > 电源 > 功率器件
[导读]1 引言  如图1所示,一般的级联型高压变频器的整流部分都是采用不可控的二极管,因而能量传输不可逆,当电机处于再生发电状态时,回馈的能量传输到直流母线电容上,产生泵升电压,使电容电压不稳。过高的泵升电压有

1 引言

  如图1所示,一般的级联型高压变频器的整流部分都是采用不可控的二极管,因而能量传输不可逆,当电机处于再生发电状态时,回馈的能量传输到直流母线电容上,产生泵升电压,使电容电压不稳。过高的泵升电压有可能损坏开关器件,从而威胁变频器的安全工作。

  为此本文采用成熟的三相pwm整流技术,使用可控开关器件组成单个功率单元的整流电路,实现能量双向传输。同时对直流母线电容电压进行闭环控制来稳定直流母线电容的电压。这种方法还能实现网侧单位功率因数,使级联型高压变频器成为真正的绿色变频器。仿真证明该方法简单有效。

2 单个功率单元整流部分的数学建模及工作原理

  从图1(a)的拓扑结构可以看到,级联型高压变频器由多个功率单元级联而成。因此,可以以单个功率单元为研究对象,建立它的数学模型并分析其工作原理。

  从图1(b)可以看到,功率单元的整流部分是由不可控的二极管组成。为了实现能量回馈,稳定直流母线电容电压,需要用可控的igbt替代二极管,进行pwm整流控制。图2是改造后的功率单元拓扑结构图。

  图2中,lx(x=a,b,c)为交流侧滤波电感,电阻rx(x=a,b,c)为滤波电感lx的等效电阻和功率开关管损耗等效电阻的合并。

  设三相电源电压为:

         

  式中:ed,eq,id,iq分别为功率单元整流部分的电源电压矢量、输入电流矢量在d-q轴上的分量。

  由(3)式可以看出,d、q轴变量相互耦合,因而无法对d、q轴的电流进行单独控制。为此引入id、iq的前馈解耦控制,且采用pi调节器作为电流环控制器,则有以下方程:

        

  式中:ud*、uq*是d-q轴的电压给定;kdp和kdi分别是d轴pi调节器的比例和积分系数;kqp和kqi分别是q轴pi调节器的比例和积分系数。

 

  由式(4)可以看出,电压指令已经实现了完全解耦控制,其系统控制框图如图3所示。图3中,采用由pi调节器组成的电压-电流双闭环结构,外部电压环用于实现输出电压的稳定,内部电流环控制交流输入电流与输入电压同相。其工作原理如下:输出电压vdc和给定参考电压vdc*比较后送入电压pi控制器,电压控制器的输出信号作为网侧电流有功分量的给定值id*,其大小根据整流器的有功输出调节,为达到单位功率因数整流或逆变,无功分量的给定值iq*设定为0,稳态时dq轴的电流给定信号都为直流量,两个给定值与网侧经过变换后的反馈值id、iq相比较后,送入电流pi调节器,在经过解耦和dq→αβ变换后得到三相网侧电压在两相静止坐标系上的控制信号,再经过电压空间矢量脉宽调制模块后,输出六路svpwm控制信号,从而实现对功率单元整流器的控制。

3 功率单元级联的仿真系统

  按照第2节介绍的数学模型,搭建的功率单元仿真模型如图4所示。

  其中,整流部分控制器的仿真模型如图5所示。

4 功率单元级联的仿真系统

  图6是每相串联3个功率单元级联型高压变频器的系统仿真模型。

 

5 仿真实验

  在系统仿真中采用的实验参数如下:电压环采样频率为2.5khz;电流环采样频率为2.5khz;三相pwm整流器输入电压有效值vm=380v;电感寄生电阻阻值r=0.5ω;直流母线电压给定vdc*=750v,初始电压vdc=550v;三相输入电源频率f=50hz;三角波载波频率fs=2.5khz;直流母线端电容c=3200μf;网侧滤波电感l取0.8mh。负载功率为1mw。仿真中不考虑开关损耗的影响。

  本仿真实验中,在0~0.25s,级联变频器的整流器处于不控整流状态,由整流器中igbt内反并联的二极管进行不可控整流;在0.25s~0.55s,级联变频器的整流器处于可控整流状态,整流器中的igbt开始工作;在0.55s变频器突投负载;在0.8s改变变频器受控电流源的电流方向,变频器的能量开始回馈,级联变频器的整流器由整流状态转变成逆变状态。

  图7是级联型变频器网侧相电流、相电压和功率单元直流母线电压的仿真波形。从图7(b)中可以看出,在0.25s级联变频器的整流器开始工作时,vdc由初始值550v迅速上升至给定值vdc*,并很快稳定下来;在0.55s时,变频器突投负载,vdc被瞬时拉低,但很快就能重新稳定在给定值。稳定后电压波动很小;在0.8s时刻,由于改变受控电流源的电流方向,变频器的能量开始回馈,整流器开始由整流状态转变成逆变状态。回馈的能量使vdc在0.8处瞬时拉高,但由于级联变频器的整流器的响应速度非常快,很快就使vdc重新稳定在给定值。同时,也因为整流器的响应速度快,使vdc在0.8处的升高的不多,保证了系统的安全运行。

  从图7(a)中可以看出,在0.25s时级联变频器的整流器开始工作时,网侧电流有些波动,但在很快就能稳定下来;在0.55s变频器突投负载时,网侧电流波动很小,并很快稳定下来。通过比较网侧电压和电流的相位可以看出,两者相位几乎重叠在一起,功率因数接近于1;在0.8s时刻,级联变频器进入能量回馈的状态,整流器处于逆变状态。整流器使网侧电流的相角网侧电压的相差近180°,功率因数接近-1。级联变频器逆变器的三相输出电压、电流和单相输出电压波形如图8所示。

6 结束语

  通过仿真实验的波形可以看出,改进后的级联型高压变频器不仅可以进行能量的双向传输,实现能量回馈;而且,控制系统的响应速度非常快,使变频器具有较好的动态性能。因此,该改进方案是正确可行的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭