当前位置:首页 > 电源 > 功率器件
[导读]引 言 快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二

引 言 快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。击穿电压是最重要得参数之一,它和最大电流容量一起决定了电力电子器件的额定功率,其中功率FRD通常是通过大面积PN结保证实现大电流。但是对于高压工作的FRD来说,平面工艺不可避免的存在着结面弯曲效应而影响击穿电压,使得器件实际击穿电压只有理想情况的10%-30%。因此为了保证FRD能工作在高电压下,就需要使用结终端技术来消除结面弯曲带来的影响,提高FRD器件的耐压。在提高耐压采用终端技术的同时,还要兼顾到其它特性的影响和优化。如本文后面将要提到的,在采用金属场板终端提高耐压的同时,还要防止圆片打火问题的发生。

1场限环的基本结构

图1:场限环结构示意图

 

 

图2:多个场限环结构示意图

 

 

场限环的基本结构见图1,图2.。就是在被保护的主结周围间隔一定距离,扩散形成一定大小的同心环。扩散环改变了主结边缘空间电荷分布,减轻了电场集中效应。提高了耐压。单环的作用有限,一般在高压下需要通过多个环来达到预定的电压。

2 场板的基本结构分析

图3:场板结构示意图

 

 

场板的基本结构见图3,也是常用的提高耐压的方法之一。场板下除边缘部分外,电场分布是一维的,类似于MOS电容。击穿时的击穿电压为击穿时半导体的电压和氧化层的压降之和。在场版的边缘,电力线集中。如果场板长度比内部耗尽层还大,N+P结的场板有电力线从板向半导体发出,在半导体表面有电力线进入,这等效于半导体表面有正电荷,他对电场的影响可看做是无穷大的半导体中间增加了一层电荷,这些正电荷产生垂直于表面的场外,也将产生平行于表面的场,每一正电荷在其左边产生指向左的场,在其右边产生指向右的场。所以在场版下面的多数区域,正电荷产生的横向电场是互相削弱。然而在场板的边缘,所有正电荷产生的横向场是互相加强的,结果在那里造成一个横向场的峰值。如果场板很短或者无场板时,在PN结的边缘就有很强的电场,场板上所有正电荷都是使这点电场减少的,因此场板愈长,电场峰值愈小。

3 气隙的击穿特性

我们知道,影响空气间隙放电电压的因素有很多。主要有电场的情况,比如均匀与不均匀;电压的形式,比如直流,交流还是雷电冲击;大气的条件,比如温度,湿度,气压等。较均匀电场气隙的击穿电压与电压极性无关,直流,工频击穿电压(峰值)以及50%冲击击穿电压都相同,分散性很小。

 

 

当S不过于小时(S>1cm), 均匀空气中的电场强度大致等于30KV/cm。稍不均匀的电场气隙的击穿电压,可以看作球与球之间,球与板之间,圆柱与棒之间,同轴圆柱的间隙之间的击穿。它的特点是不能形成稳定的电晕放电,电场不对称时,有极性效应,不很明显,直流,工频下的击穿电压以及50%冲击击穿电压相同,分散性不大,击穿电压和电场均匀程度关系极大,电场越均匀,同样间隙距离下的击穿电压就越高。直流电压下的击穿电压具有极性效应,棒棒电极间的击穿电压介于极性不同的棒板电极之间,平均击穿场强正棒和负板间约4.5KV/cm,负棒和正板间约10KV/cm,棒和棒之间约4.8-5KV/cm。击穿电压与间隙距离接近正比,在一定范围内,击穿电压与间隙距离呈线性关系。球与球间隙之间存在邻近效应,对电场会有畸变作用,使间隙电场分布不对称,同一距离下,球直径越大,击穿电压也越高。

图4 击穿电压与间隙距离的关系

 

 

4 实验过程

4.1失效现象与分析

FRD在开发过程中工程批流片出来后测试击穿电压,当电压加到几百伏时,可开始看到有严重的打火现象,测试打火曲线如图5,打火发生后,圆片上可看到终端外围两个金属铝条有明显发黑的迹象,如图6。

图5 FRD 圆片击穿电压测试曲线

 

 

图6 FRD 圆片打火位置图片

 

 

其中距离cell区较近的金属是终端的一个金属场板,在最外围的一个是截止环的金属。从失效现象来看,打火应该是最外围的两个金属之间进行的。工艺上,当初为了节省成本,金属完成后没有加钝化层次,因此两个金属之间是没有氧化等介质的。检查版上数据,金属场板到截止环金属之间距离为72um,怀疑可能此距离太小,又没有介质,因此导致金属之间电场过强,引起打火,为了验证,特对原结构进行了模拟。

4.2原结构模拟结果

如图7所示原始结构进行模拟,结果击穿电压约1500V,最外围的金属场板与最外围截止环金属之间电势差约800V,最外围场板承担了较大的电压,从表面电场分布看,最外围金属场板处表面电场最强,约2.6E5V/cm,前面其它环的电场基本在1.6E5V/cm左右,金属场板处电场较集中。而空气的击穿场强约为30KV/cm,金属场环和截止环之间距离为72um,空气耐压约220V,据此推断失效的原因应该是金属之间距离较近,电压较大引起空气击穿,从而发生打火现象。

图7:FRD 原版结构

 

 

图8 FRD原版模拟结果电势分布图[!--empirenews.page--]

 

 

图9 FRD原版模拟结果表面电场分布图

 

 

4.3 新设计模拟

由以上分析认为,圆片测试打火的主要原因在金属场板和截止环金属之间电势较大,引起金属间打火,下一步主要从考虑降低两者之间的电势,减小金属场板处的表面电场出发,进行了以下模拟。

4.3.1增加两个环

考虑在金属场板前再增加两个场限环,使得前面的分压增加,以减少金属之间的电势差,模拟结果如下,FRD击穿电压没有改变,仍旧在1500V,金属场板和截止环之间的电势从800V降到约500V,表面电场从2.6E5V/cm降低到1.7E5V/cm。

图10:FRD增加两个环后结构

 

 

图11 FRD增加两个环后电势分布图

 

 

图12 FRD增加两个环后表面电场分布图

 

 

4.3.2增加三个环

从增加两个环的结果看,增加环后电势和电场都有改善,于是考虑增加三个环,模拟结果如下,FRD击穿电压没有改变,仍旧在1500V, 金属场板和截止环之间的电势降为约400V,表面电场由2.6E5V/cm降低到1.2E5V/cm。

图13 增加3个环后结构

 

 

图14 增加三个环后电势分布图

 

 

图15 增加三个环后表面电场分布图

 

 

4 结论分析

从以上模拟结果可以看到,通过优化终端结构,可以有效减少金属之间电势差,改善表面电场分布,从而改善圆片测试打火现象。同时,工艺上可考虑在增加环的同时增加金属后钝化层,以更好的改善产品性能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭