当前位置:首页 > 电源 > 功率器件
[导读]看似只有一个输入端Vin,但有前提条件——理想电源。此电路共有5个输入端,Vin、Vcc、Vee、Vp和GND。1. Vin为设定输入端,自然希望所有系统输出都只与其相关。2.

看似只有一个输入端Vin,但有前提条件——理想电源。

此电路共有5个输入端,Vin、Vcc、Vee、Vp和GND。

1. Vin为设定输入端,自然希望所有系统输出都只与其相关。

2. Vcc和Vee为运放电源。通常运放只需要5mA以内的偏流,因此只需滤波电容大于100uF既可限制纹波在可容忍的范围内,况且Vcc和Vee一般会有78xx稳压,78xx的纹波抑制能力不低于100倍即40dB,运放本身的电源抑制比至少80dB,因此Vcc和Vee的小幅变化对系统的影响基本可以忽略,即Vcc和Vee可视为理想电源。

3. GND也是输入端?不错,除非铜的电阻率为0,否则地阻抗会起作用。如果PCB严格一点接地,由于地阻抗造成的问题基本不用考虑。否则,PCB设计不合格。

还剩下一个Vp,虽然Vp也可由78xx得到,稳压前还可用大电容滤波,但MOSFET是没有电源抑制能力的,因此Vp的波动会通过影响输出电流(一定频率下,系统调整能力是有限的)直接作用在Rsample上,并反应在运放输入端Vin-。

100mA的电源的纹波问题是容易处理的,如果电流达到A_级别以上,很少有便宜的稳压IC可以处理,虽然LT108x能达到5A,但是在Vdrop不大的情况下,如果Vdrop=3V,一般的小散热器就会力不从心,5A只是瞬间电流储备能力,不推荐连续使用。因此A_级别以上的电源大多直接整流滤波得到,纹波不可小视。虽然理论上2000uF/A的滤波电容已足够抑制纹波,但那是在变压器内阻极低的前提下。更大电流的电源很多由可控硅调压得到,那个纹波就更厉害,即使滤波电容很大,纹波仍可由示波器清晰看到。

如果Vp由开关电源提供,开关电源工作频率附近的噪声将作为输入信号进入电路。

如果纹波频率很低,例如100Hz,系统在此频率完全可以应对,但Vp引入的信号(纹波和噪声)通常不是正弦波,而是非对称三角波,上升沿和下降沿分别为电容充电和放电曲线的一部分,富含谐波,而且谐波频率很高,但幅度逐次衰减。开关电源更是如此,由于其工作频率很高,纹波基波幅度已经很大,因此可能造成更显著的问题。

纹波或其某个谐波通过Vp进入电路后,如果系统在此频率上调整能力有限,将造成输出电流波动(系统无法以足够的速率相应反向调整),并反应在Rsample上,进入Vin-。运放随即调整输出端,但能力有限,输出端尚未调整好,纹波的幅度和相位就可能发生变化,再次通过Rsample反馈到Vin-就可能出现相位裕量不足的情况,从而诱发振荡

由电路理论出发,如果系统在某个频率上控制能力(带宽)不足,则无法抑制此频率上的电源波动影响。因此要么提高系统带宽,要么改善电源质量。

然而,对于恒流电子负载而言,原则上要面对各种电压源Vp,而且大多数是作为中间产品的实验源,性能参差,纹波水平各异。改善电源质量基本是句空话。提高系统带宽对于稳恒用途又实在意义不大,而且造成成本陡增。

还有一种消极但便宜而且适应性强的处理办法,使运放无法看到高频率的纹波,即积分补偿。

在运放Vin-和输出端之间添加Rm、Cm串联网络,使Rsample上的电压进入Vin-之前由RF、Rm和Cm进行积分滤波,使输出电流中高次谐波成分无法(或大部分无法)进入运放。对于电子负载,积分补偿更为重要。

 

 

由于RF、Rm和Cm构成积分器,因而称为积分补偿。积分补偿的0dB频率fi0dB由RF和Cm决定fi0dB=1/2piRFCm。

大于0dB频率的纹波成分受到衰减,直至达到Rm和Cm确定的回转(零点)频率fiz=1/2piRmCm。回转的作用在于不过分降低系统对高频的反应能力。

0dB频率至少应低于诱发振荡的纹波频率10倍,已达有效衰减。

 

 

很多电路不使用Rm,即没有回转频率。那一定有Cm很小(100pF左右)的前提,否则如果Cm很大,积分频响曲线在高频段衰减过于严重,将造成系统高频控制力下降。对于Vp性能不太好的情况,Cm可能取值很大,因此Rm是必要的。

显然,积分器0dB频率越低,系统越稳定,但也会由于Rm、Cm和Rc、Cc构成的局部反馈使系统瞬态性能降低,因此适可而止。

积分补偿没有固定的经验值,如果Vp质量较好,Cm甚至可以降至22pF,反之,如果Vp质量很差(例如电子负载通常见到的情况),Cm可增大至1uF。

此外Cm的选择还与运放GBW有关,GBW越高(当然要有频率足够高的MOSFET配合),系统对于高频的控制能力越强,Cm可越小。

Rm决定回转频率,通常回转频率高于0dB频率10倍以上,因此Rm大致为1/10RF=100 Ohm。

因此,如果可能,一定首先改善Vp质量。

好在本次只做100mA的电流源,一个7824或LM317就搞定了。在此情况下Cm=1000pF足矣。fi0dB=160kHz,fiz=1.6MHz,160kHz频率以上由Vp造成的电流纹波/噪声可由输出减振器网络消除。

本次增加成本:

100 Ohm电阻 1只 单价0.01元,合计0.01元

1000pF/50V电容 1只 单价0.03元,合计0.03元

合计0.04元

合计成本:9.55元[!--empirenews.page--]

题外话:

Rm、Cm、Rc和Cc构成的局部反馈问题至今悬而未决,用拉普拉斯变换,无论如何计算,运放开环直流增益都会下降至(Cs+Cm)/Cm,但实际上直流时电容是开路,运放开环直流增益不受影响。

 

 

也许是拉普拉斯变换对直流力不从心,细细想来,倒是一个简单的问题,1/0不是无穷大,而是没有意义。

考虑以下的电路,Vin为直流电压,Vout是多少呢?如果用容抗计算Vout=1/2Vin,但实际上Vout=任意值。因为直流下电容没有容抗概念。

 

避免轻微的超调过冲和常规电压接口

由于噪声增益补偿的问题,电流源在阶跃激励下会有轻微的超调过冲,稍严重一点儿在示波器上能看到逐渐衰减的超调振荡

虽然不严重,但追求完美即完善细节,尽量做得比对手好一点。

如果电流源看不到陡峭的上升沿,也就不存在这个问题了。

蒙蔽它。只需一个低通滤波器。

恰好正需要一个常规电压接口,0—0.3V估计不是标准的电压,标准电压一般都是2.5V/5V(DAC、基准)或7V(更好的基准)。

电阻分压降压即可,以2.5V为例。

(2.5/0.3)-1=7.33,如果对地电阻R4为3.3k Ohm,水平电阻为24.2k Ohm,其中设置微调R2=5k Ohm + R3=500 Ohm电位器,固定电阻R1取值22k Ohm。

对地电阻并电容C1,获得低通滤波器,转折频率f=1/2piC1(R4//(R1+R2+R3))《zc=1kHz,C1》0.054uF,实际取0.1uF。

R1和R4影响电流源的温度性能,因此必须使用低温漂电阻。

 

 

此时Iin的影响就应降至最低。

本次增加成本:

22k Ohm 0.1% 1/4W 25ppmmax金属膜电阻 1只 单价0.50元,合计0.50元。

3.3k Ohm 0.1% 1/4W 25ppmmax金属膜电阻 1只 单价0.50元,合计0.50元。

5k Bouns 10圈精密微调3296电位器 1只 单价2.00元,合计2.00元

500 Ohm Bouns 10圈精密微调3296电位器 1只 单价2.00元,合计2.00元

0.1uF/50V电容 1只 单价0.03元,合计0.03元

合计5.03元

合计成本14.58元

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭