当前位置:首页 > 电源 > 功率器件
[导读] 本文就三极管的工作原理进行了简单介绍。1、晶体三极管简介。晶体三极管是p型和n型半导体的有机结合,两个pn结之间的相互影响,使pn结的功能发生了质的飞跃,具有电流放大

 本文就三极管的工作原理进行了简单介绍。

1、晶体三极管简介。晶体三极管是p型和n型半导体的有机结合,两个pn结之间的相互影响,使pn结的功能发生了质的飞跃,具有电流放大作用。晶体三极管按结构粗分有npn型和pnp型两种类型。如图2-17所示。(用Q、VT、PQ表示)三极管之所以具有电流放大作用,首先,制造工艺上的两个特点:(1)基区的宽度做的非常薄;(2)发射区掺杂浓度高,即发射区与集电区相比具有杂质浓度高出数百倍。

2、晶体三极管的工作原理。

其次,三极管工作必要条件是(a)在B极和E极之间施加正向电压(此电压的大小不能超过1V);(b)在C极和E极之间施加反向电压(此电压应比eb间电压较高);(c)若要取得输出必须施加负载。

图2-17 三极管的构造示意图

最后,当三极管满足必要的工作条件后,其工作原理如下:

(1) 基极有电流流动时。由于B极和E极之间有正向电压,所以电子从发射极向基极移动,又因为C极和E极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压的作用下,通过基极进入集电极。于是,在基极所加的正电压的作用下,发射极的大量电子被输送到集电极,产生很大的集电极电流。

(2)基极无电流流动时。在B极和E极之间不能施加电压的状态时,由于C极和E极间施加了反向电压,所以集电极的电子受电源正电压吸引而在C极和E极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因

而就没有集电极电流产生。

综上所述,在晶体三极管中很小的基极电流可以导致很大的集电极电流,这就是三极管的电流放大作用。此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是三极管的开关作用(开关特性)。

参见晶体三极管特性曲线2-18图所示:

图2-18 晶体三极管特性曲线

3、晶体三极管共发射极放大原理如下图所示:

A、vt是一个npn型三极管,起放大作用。

B、ecc 集电极回路电源(集电结反偏)为输出信号提供能量。

C、rc 是集电极直流负载电阻,可以把电流的变化量转化成电压的变化量反映在输出端。

D、基极电源ebb和基极电阻rb,一方面为发射结提供正向偏置电压,同时也决定了基极电流ib.

图2-19 共射极基本放大电路

E、cl、c2作用是隔直流通交流偶合电容。

F、rl是交流负载等效电阻。

交流通路:ui正端-cl-vtb-vtc-c2-rl-ui负端。

(1)在日常使用中采用两组电源不便,可用一组供电。

(2)为简化电路,用“UCC”的端点和“地”表示直流电源。

(3)把输入信号电压、输出信号电压和直流电源的公共端点称为“地”并用符号“丄”表示,以地端作零电位参考。

画外音: 我们可以用水龙头与闸门放水的关系,来想象或者说是理解三极管的放大原理。其示意图如下图 2-20 所示:

图 2-20 三极管放大原理参考示意图

① 如图 2.20 (a)所示:当发射结无电压或施加电压在门限电压以下,相当于闸门关紧时,水未从水龙头底部通过水嘴流出来。此时, ec 之间电阻值无穷大, ec 之间的电流处于截止状态,或者说是开关的 OFF 状态。

图 2-20 三极管放大原理参考示意图

② 如图 2.20 ( b )所示:当对发射结施加电压在门限电压范围时(以硅管 0.7V 左右为例),相当于闸门松动一点点,从水龙头底部通过水嘴流出的水成滴答状态。此时, ec 之间的电阻值也下降了一点点。

图 2-20 三极管放大原理参考示意图

③ 如图 2.20 ( c )所示:当对发射结施加电压在 0.8V 时,相当于闸门已打开三分之一的状态时,水龙头底部已经可以有三分之一的水通过水嘴流出来了,此时, ec 之间的电阻值也下降了三分之一, ec 之间的电流处于调控或者说是放大状态。

图 2-20 三极管放大原理参考示意图

④ 如图 2.20 ( d )所示:当对发射结施加电压在 0.9V 时,相当于闸门已打开三分之二的状态时,水龙头底部已经可以有三分之二的水通过水嘴流出来了,此时, ec 之间的电阻值也下降了三分之二, ec 之间的电流处于调控或者说是放大状态。

图 2-20三极管放大原理参考示意图

⑤ 如图 2.20 ( e )所示:当对发射结施加电压在 1V 或者 1V 以上时,相当于闸门已完全打开的状态时,水龙头底部所有的水已经可以通过水嘴流出来了,此时, ec 之间的电阻值也下降为“ 0 ”,或者说很小,可以或略不计, ec 之间的电流处于饱和状态,或者说是开关的 ON 状态。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭