当前位置:首页 > 电源 > 功率器件
[导读]1、线电阻的电压降的影响——地电平(0电平)直流引起的低电平提高图中虚线为提高的情况。提高幅度与IC的功耗大小、IC密度、馈电方式、地线电阻(R) 、馈电的地线总

1、线电阻的电压降的影响——地电平(0电平)直流引起的低电平提高

图中虚线为提高的情况。提高幅度与IC的功耗大小、IC密度、馈电方式、地线电阻(R) 、馈电的地线总电流有关。 ΔV地= ΔI&mes; ΔR

 

 

2、 信号线电阻的电压降的影响

a) IC输出管脚经过印制导线或电缆到另一IC的输入脚,输出低电平电流在印制导线或电缆电阻上引起一个低电平的抬高,其值为ΔVOL=IOL&mes;R 。 见图中的上面一条虚线。

 

 

显而易见,低电平的抬高与印制导线电阻值及输出低电平电流有关,如下图所示: B点的低电平比A点的低电平高

注意:当IC输出脚为低电平时,如果此器件不是驱动器, 而是一般器件,则由于输出低电平电流太大, 远大于器件手册给出的值,输出三极管将退出饱和区,进入工作区,使输出低电平抬高很多。如下图中上面一条虚线所示:

 

 

端接电阻大小

输出管饱和深度

输出管β值

b) IC输出管脚经过印制导线或电缆到另一个IC的输入脚,输出高电平电流在印制导线或电缆电阻上引起一个高电平的降低,其值为ΔVOH=IOH&mes; R,见下图中高电平上的下面虚线:

 

 

IOH由下列因素决定:端接方式、端接电平、端接电阻大小

R由下列因素决定:线宽、线厚、线长

显而易见,高电平的降低与印制导线或电缆电阻值及输出高电平电流有关,如下图所示:

 

 

B点的高电平比A点的高电平要低

注意: IC输出脚为高电平时, 如果此器件不是驱动器,而是一般器件, 则由于输出高电平电流太大,远大于器件手册给出的值时,输出管也会退出饱和区,进入工作区,使输出高电平降低很多。如下图中下面一条虚线所示:

 

 

3、电源线电阻的电压降的影响

IC的电源电压(如+3.3V),如果系统中存在差值,当小于+3.3V时, 输出高电平将产生一个下降值, 如上图中高电平上的虚线所示:

 

 

由于系统电源有集中电源和分散的电源模块之分,此差值不同,由于IC功耗的大小、IC密度、馈电方式、电源线的馈电电阻值以及电源电流值,引起一个 ΔVCC (ΔVCC =ΔI&TImes;ΔR)

以上原因,使TTL信号波形变得离理想波形很远了。 低电平大为提高了,高电平也大为降低了。 对这些值若不严加控制, 对系统工作的稳定可靠工作是不利的。此外,结温差,即不同功耗的器件的P-N结的温度不同,还会影响高低电平及门槛电平的变化也会影响系统工作。

除上面所说的直流成分之外,更为重要的是系统是以极高频率在工作,也就是说, 系统内的器件、导线有各种频率的, 各种转换速率的信号在动作、传递。 首先是相互之间的信号电磁藕合 (串扰) 和信号在不同特性阻抗传输路径上的反射, 以及电源, 地电平由于IC高频转换引起电流尖峰电平,使TTL信号波形变得更坏。

4、转换噪声

由于系统工作时, 器件以高频转换, 造成供电系统上有高频率变化的电流尖峰,而供电的电源线路和地线路都可看成是很小的电阻、电感、电容元件。电流尖峰值太大, 在它们上面会产生较大的交流尖峰电压,其电源上的尖峰电压基本上会串扰到高电平上,而地电平上的尖峰电压会串扰到低电平上,如下图所示:IC内部同样存在这种尖峰电压。

 

 

5、串扰噪声

由于系统组装越来越密, 印制导线之间的距离越来越近,邻近导线上有高速转换的电平信号。 如正跳变信号跳变的时间tr和负跳变的时间tf都很小,使得导线上已有信号上叠加一个较大的电磁藕合信号(串扰信号)。如下图中较大的尖峰信号。这些信号还包括插头座上的信号针之间的串扰信号以及电缆中信号之间的串扰。

 

 

决定因素:tr与tf值、线宽、线间距、(基材)介质的厚度、介质的介电常数、平行线长、重叠线长、插头座信号针地针比、电缆信号线地线比。

6、 反射噪声

如果IC之间的互连线比较长 (复杂系统往往是这样) ,线的特性阻抗又不均匀,或者终端没有匹配,会引起反射,如果始端也不匹配, 则会来回 反射而造成振铃。 如下图所示:

决定因素:特性阻抗、匹配方式、失配大小

 

 

终端反射系数、始端反射系数、线长

7、边沿畸变

如果信号频率升高到一定程度,也就是器件工作频率达到一定的高度极限,而且印制导线又较长或者负载电容较大时, tr ≥tw上升时间等于或大于脉冲宽度,信号畸变到没有高低电平平顶或者远离平顶。如下图所示(实线):

举例“仿真或示波器实测”均可验证。

决定因素:线宽、线长、基材介质厚度、介质介电常数、负载数、工作频率(脉宽)、tr数字信号的变化。讨论了上面七条,可见其畸变不容忽视。如果任其自流,不严加限制,造出来的系统不可能稳定、可靠的工作。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭