当前位置:首页 > 电源 > 功率器件
[导读]TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关 电源。TL494有SO-16和PDIP-16两种封装形式,以适应

TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关 电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。TL494主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力

随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如IGBT、MOSFET)、PWM技术及开关电源理论的发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。

开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计小汽车中的音响供电电源,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。

TL494广泛应用于半桥式开关电源,它具有工作频率和工作电压高、控制方式多、价格低廉等优点。输出部分在上下两端各自采用N沟道MOSFET和P沟道MOSFET构成独特的驱动方式来驱动,负载的另一侧连接到半桥方式的电容器,因此具有整体电路简单、工作状态稳定、价格低廉等特点,应用于工作频率低于10kHz、功率在15W~50W的工业用报警器时可提高产品的竞争力。

TL494的主要特性

TL494工作在7V~40V的宽电压范围内,最大工作频率为200kHz,内部具有锯齿波发生器、PWM发生器和滞后时间调整功能。

基于TL494的开关功率放大器

图1是基于TL494的开关功率放大器的框图。电路设计的关键是占空比调节电路、输入信号压缩电路和MOSFET驱动电路。

 

 

占空比调节电路

占空比是PWM信号调制时提高电压利用率的关键。因为TL494是开关电源用集成芯片,所以在其内部把最小滞后时间设定为0.1V电压。最大占空比在发射级输出时约为96%。图2所示为输入部分和PWM信号调制的部分电路。

 

 

在图2中,当C4=1000pF,R4=24k时,工作频率约为78kHz。如果没有占空比调节电路D8、D17、R23,则因为内部滞后时间比较器的比较点为0.1V,所以最小导通时间约为1.52μs,最小占空比为D=1.52/13≈12%。因此,PWM时电压利用率将下降。如果使用D8、D17、R23,则会在锯齿波发生用的电容器C4的E点产生0.82V的偏置电压,把锯齿波的起点从原来的0V提高到0.82V。因此导通时间减小到0.64μs,最小占空比减小到D=0.64/13≈4.9%,可明显地提高电压利用率。图3是无占空比调节电路时输出波形,图4是有占空比调节电路时输出波形。

 

 

输入信号压缩电路

因为报警器的输入信号变化范围较大,所以需要将幅度较大的信号按一定比例压缩。在图2中,R6、R16、D10、D11构成输入信号压缩电路,其关键是利用了二极管的输入特性。图5示出其输入特性,其中D10和D11并联,可在正负两个方向压缩信号。

 

 

压缩比取决于R6、R16的值,其值越大,压缩比越大。调整R6、R16的值,设定压缩信号的变化范围为-0.82V~0.82V,则变化量是1.64V。见图4,锯齿波电压变化范围是0.82V~3.25V,所以TL494内部误差放大器的输出信号变化范围是2.43V。内部误差放大器的增益取决于R7和R20,调整其值,当压缩信号的变化量在1.64V时,将内部误差放大器的输出信号变化范围设定为2.43V即可。警报器大都使用高音扬声器,因此可大幅度降低振幅较大的低音。

MOSFET驱动电路

P沟道MOSFET采用IRF9540,具有最大工作电压100V、最大工作电流18A、VGS电压5V~15V时饱和等特性。N沟道MOSFET采用IRF540,具有最大工作电压100V、最大工作电流27A、VGS电压5V~15V时饱和等特性。驱动三极管Q3采用NPN型C8050,Q7采用PNP型C8550。这两种驱动三极管都具有最大工作电压30V、最大工作电流1A、VBE为12V的特性。图6为MOSFET驱动电路。

 

 

图7所示为MOSFET驱动原理波形。当A点的脉冲电压为低时,电流通过稳压二极管D7和三极管Q3的反偏形成VGS电压,QH导通。当A点的脉冲电压为高时,电流通过稳压二极管D9和三极管Q7的反偏形成VGS电压,QL导通。图7示出了详细的驱动波形,其中脉冲电压为低时,其电压低于VL才能使QH导通,脉冲电压为高时,其电压高于VH才能使QL导通。从VL变化到VH需要一定时间,这时会出现QH和QL同时截止的状态,因此,脉冲变化过程很安全。

 

 

QH和QL的VGS由下式决定:

15》VGS=VC-VD-VBE》5 (1)

式中:VGS为MOSFET的驱动电压;VC为电源电压;VD为稳压管D7和D9的稳压电压(一般使用相同的稳压管);VBE为C8050和C8550的反击穿电压。

图8是实测的驱动波形。脉冲电压从低到高变化过程中,QH和QL同时截止的时间约为100~300ns。

 

 

输出部分工作原理

如图6所示,输出部分由QH、QL和L3、C8、C5、C7构成。输出电压经过L3、C8滤除高频波后传送到负载。一般在输出端采用一个电解电容器,但本电路采用C5和C7构成半桥方式,然后将其中点连接到负载。这种连接方式的优点是两个电容器既为输出信号的传送通路(此时电容值是两个电容的并联值),同时也对电源具有滤波作用(此时电容值是两个电容的串联值),而且把电容器的内压降低一半。

实验结果

表1所示为输入电压为35V、工作频率为78kHz时使用不同稳压值的稳压二极管时的静态电流。

 

 

从表1可以看出,稳压二极管的稳压值为0V、5V时VL和VH导通点的距离太近,同时导通时间太长,有较大的静态电流,而20V时虽然电流较小,但MOSFET严重发热。从表1可知,工作电压为35V时稳压二极管的选取范围是7.5V~15V。

实验结果表明,把TL494的PWM信号用于N沟道MOSFET和P沟道MOSFET,构成独特驱动方式的开关功率放大器克服了两个功率MOSFET同时导通的缺点,具有理想的驱动波形,效率大于95%,带宽良好且价格低廉,完全满足工业用报警器的要求。

在18W输出功率下,与TDA7481构成的功率放大器相比,无多大差别,而且基本上没有发热现象,可以去除散热片。

若要获得更大输出功率,只需把工作电压提高到35V以上,并配上适当的稳压二极管即可。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭