当前位置:首页 > 电源 > 功率器件
[导读]传统上LC谐振频率的测试方法是通过逐点改变加在 (直接或者间接 )LC谐振回路上信号频率来找到最大输出时的频率点,并把这一频率点定义为 LC谐振频率。很明显这种测试方法的缺点是:测试方法比较复杂,测试时间长,测试精度低,而且直接受到谐振体尤其含磁芯谐振体由于较长测试时间所引起温度变化的影响。本论文中所要介绍的应用在PLL基础上对LC谐振频率进行测试的原理和方法具有快速,高精度和不受温度变化的影响,并且还具有测试方法简单的特点。本论文主要从理论上简明使用PLL对LC谐振频率进行测试的原理。

传统上LC谐振频率的测试方法是通过逐点改变加在 (直接或者间接 )LC谐振回路上信号频率来找到最大输出时的频率点,并把这一频率点定义为 LC谐振频率。很明显这种测试方法的缺点是:测试方法比较复杂,测试时间长,测试精度低,而且直接受到谐振体尤其含磁芯谐振体由于较长测试时间所引起温度变化的影响。本论文中所要介绍的应用在PLL基础上对LC谐振频率进行测试的原理和方法具有快速,高精度和不受温度变化的影响,并且还具有测试方法简单的特点。本论文主要从理论上简明使用PLL对LC谐振频率进行测试的原理。

基本原理

测试LC谐振频率可以通过图1所示的2次耦合回路形式来完成。其中 L2C2组成一个待测LC谐振回路, L1是发射线圈,Li是只有单匝的接受线圈。一般测试时可以满足: 1/ωCi》Ri》ω Li,M2》M1》M3的测试条件。这里ω是实际工作角频率,Ri,Ci与 R1,C1分别是接受线圈与发射线圈的接入回路的电路参数, M2是待测LC谐振回路与接受线圈间的耦合系数,M1是待测LC谐振回路与发射线圈间的耦合系数,M3是发射线圈与接受线圈间的耦合系数。满足上述测试条件下从图1可以得出。

这里V1是发射信号的电压, V2是接受信号的电压,则测试回路的传输函数是由下式所决定的。

图1LC谐振测试回路的原理图

根据LC谐振回路的性质可以得到:

这里ω 01与ω 02(ω02》ω01)分别是由发射线圈 LC谐振回路与待测 LC谐振回路的谐振角频率,实际应用时 Q2在100左右,而 Q1小于1。此时式3可简化为:

所构成。其中:

如果实际工作角频率与待测谐振角频率间的角频率差 Δω控制在远小于 ω02,这样可以无视 Δω的高次项,式5可以作进一步简化。

所以振幅函数和相位函数可以分别简化为下式。

谐振时振幅为最大,此时振幅和相位函数可以分别由下式给出。

设定电路参数为f02=83kHz、f01=800Hz、Q1=0.1、Q2=70、M2/L2=0.2、M1/L1=0.1、M1/L2=10-4、R 2/Ri=10-3时在Mathcad下仿真结果如图 2所示,其中振幅特性是归一化后的特性, d=Δf。从图中可以看出有跳周现象,这是由于式 8分式中分母部分发生归零引起的。该点角频率差定义为 Δω0,则由式 8可以得出以下关系式。

上式满足了PLL工作条件,即使用上记相位信号的 PLL回路最终锁定在待测 LC回路的谐振频率上。实际使用中根据测试条件很容易达到 A、B《1,由图1所组成的回路感度是由:

所决定的[2]。所以即使ω02有相当大的变化θ 0的变化也是很小的,即 θ0可以看作为常数。以下我们仅讨论 PLL动作范围在谐振角频率附近时的工作情况,有。则式8作以下变更。

使用式10对相位进行补偿,经过补偿后式8的实际相位Δθ是:

补偿方法一般可以使用双向延迟回路。由于实际应用时是使用固定延迟回路的,测量到谐振角频率与真实谐振角频率间会产生一个误差,假设这个谐振角频率差为Δω02,并且工作角频率范围满足Δω《ω 02。假设真实所需补偿的相位是由式10所决定的,则与固定相位补偿会产生一个相位差 Δθ0,则有式 10可以得到以下关系式。

这里Δω 02是当PLL回路工作在锁定状态下由于固定延迟所产生的谐振角频率差,对于一个具体的 LC谐振回路这是一个常数。当测试条件满足时,即使引进固定相位进行补偿其产生的误差也是很小的,几乎可以忽略不计。

实例

根据本文中所推出的原理试作了LC谐振频率测试机分别对6个种类LC谐振体样本(产品)进行测试。本LC谐振测试机已应用在6个种类LC谐振体的生产和产品检验上。具体结果参照表1和表 2。

结论

本论文提出了一种快速,高精度和不受温度变化影响的测试LC谐振频率的原理,并通过具体实例验证了上述原理的有效性,作为今后一种研究的课题是如何解明针对发射和接受端为相同频率状态下 PLL工作特征与发射和接受端为不同频率状态下 PLL工作特征的差异性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭