当前位置:首页 > 电源 > 功率器件
[导读]简介测量流经检测电阻的电流似乎很简单。放大电压,用ADC读取,就可以知道电流是多少;但如果检测电阻上的电压与系统地电压相差很远,检测就会变得比较困难。典型解决方案是

简介

测量流经检测电阻的电流似乎很简单。放大电压,用ADC读取,就可以知道电流是多少;但如果检测电阻上的电压与系统地电压相差很远,检测就会变得比较困难。典型解决方案是 在模拟域或数字域消弭该电压差。但这里介绍一种不同的方法——无线。

模拟电流检测IC是紧凑型解决方案,但其可承受的电压差受限于半导体工艺。很难找到额定电压超过100V的器件。如果检测电阻共模电压迅速变化或在系统地电压上下摆动,这些电路便无法精确测量。

数字隔离技术(磁或光学)体积有点大,但能以高精度工作,并且通常可以承受数千伏电压。这些电路需要隔离电源,但有时可以将它集成在隔离器中。如果检测电阻与主系统在物理上隔开,那么可能还要使用长导线或电缆。

无线电流检测电路克服了上述诸多限制。让整个电路随同检测电阻的共模电压浮空,并在空中无线传输测量数据,电压限制也就无从谈起。检测电阻可以位于任何地方,无需布置电缆。如果电路功耗非常低,那么甚至不需要隔离电源,一个小电池便能让它运行多年。

设计概览

 

 

图1显示了设计的框图。该电流检测电路基于斩波稳定运算放大器 LTC2063,其用来放大检测电阻上的压降。微功耗SAR ADC AD7988 将值数字化,并通过一个SPI接口报告结果。 LTP5901-IPM 是无线电模块,不仅包含无线电,而且含有自动形成IP网格网络所需的组网固件。此外,LTP5901-IPM内置微处理器以读取AD7988 ADCSPI端口。 LTC3335 是一款低功耗DC-DC电源,其将电池电压转换为恒定输出电压。LTC3335还含有库仑计,用以报告从电池获取的累计电荷。

图1. 低功耗无线电流检测电路由一个低功耗斩波运算放大器(用以放大检测电压)组成,利用低功耗ADC和基准电压源进行数字化处理,连接到SmartMesh IP无线电模块。电池输出到低功耗DC-DC转换器得到恒定电源,同时记录从电池获取的电荷。

信号链

LTC2063是一款超低功耗斩波稳定运算放大器,其最大电源电流为2μA,特别适合电池供电应用。失调电压小于10 μV,因此它可以测量非常小的压降而不会丧失精度。图2显示LTC2063配置用来放大10 mΩ检测电阻上的电压并进行电平转换。选择适当的增益,使检测电阻的±10 mV满量程输入(对应于±1 A电流)映射到接近输出端的满量程范围,其以1.5 V为中心。这一放大信号被输入至16位SAR ADC。选择AD7988是因为其极低的待机电流和良好的直流精度。采样速率较低时,ADC在两次转换之间自动关断,1 kSPS时的平均功耗低至10 μA。LT6656用于偏置放大器、电平转换电阻和ADC基准输入。LT6656 基准电压源功耗小于1 μA,可驱动高达 5 mA负载,压差很低,因此即使采用3.3 V系统电源供电,它也很容易输出精密3 V电压。

此信号链中有三个大致相等的失调误差源,相对于±10 mV满量程输入,它们共同贡献大约0.5%的误差。这包括LTC2063和AD7988的失调电压,以及电平转换电阻的不匹配(推荐使用0.1%电阻)。单点校准可在很大程度上消除该失调。增益误差一般以可用检测电阻的不精确性为主,它往往比LT6656基准电压源的0.05%、10 ppm/°C 规格还要差。

 

 

图2. 电流检测电路随同检测电阻电压浮空。斩波运算放大器LTC2063放大检测电压,把它偏置到AD7988 ADC的中间轨。LT6656-3提供精密3 V基准 电压源。

电源管理

LTC3335是一款集成库仑计的纳安功耗降压-升压转换器。它配置用来从1.8 V到5.5 V的输入电源产生3.3 V稳压输出。这使得该电路可以利用两节碱性原电池的电源供电。对于占空比型无线应用,负载电流的变化范围很容易达到1 μA至20 mA,取决于无线电是处于工作模式还是睡眠模式。LTC3335在空载时的静态功耗仅680 nA,因此当无线电和信号链处于睡眠模式时,整个电路的运行功耗非常低。另外,LTC3335可以输出多达50 mA的电流,在无线电发射/接收期间可轻松提供足够的功率,故适合各种信号链电路。

LTC3335还内置一个库仑计,非常方便。切换时,它会记录从电池获取的总电荷。此信息可通过I2C接口读出,用来预测何时需要更换电池。

无线组网

LTP5901-IPM是一个完整的无线电模块,包括无线电收发器、嵌入式微处理器和SmartMesh IP组网软件。LTP5901-IPM在本应用中执行两个功能:无线组网和管理(进程)。当网络管理器附近有多个SmartMesh IP终端上电时,这些终端会自动识别彼此,形成一个无线网格网络。整个网络自动进行时间同步,这意味着每台无线电仅在非常短的特定时间间隔内上电。因此,各节点不仅是传感器信息源,而且充当路由节点,用以将数据从其他节点传递到管理器。这样就形成一个高可靠性、低功耗网格网络,从各节点到管理器有多条路径可走,不过所有节点(包括路由节点)的工作功耗都非常低。

LTP5901-IPM包括一个运行组网软件的ARM? Cortex?M3微处理器内核。此外,用户可以写入应用固件以完成特定于用户应用的任务。在本例中,LTP5901-IPM内部的微处理器读取电流测量ADC(AD7988)的SPI端口和库仑计(LTC3335)的I2C端口。微处理器还能将斩波运算放大器(LTC2063)置于关断模式,使其功耗从2 μA进一步降低至200 nA。在测量间隔时间极长的使用场合中,这可以节省更多功耗。

总功耗

完整应用电路的总功耗取决于多种因素,包括信号链多长时间获取一次读数、节点在网络中如何配置等等。对于一个每秒报告一次的终端,测量电路的典型功耗低于5 μA,无线电的典型功耗可能为40 μA,很小的电池即可让它工作数年。

图3. 在小型PCB上实现的一个完整无线电流检测电路。唯一的物理连接是待测电流的香蕉插座。无线电模块如右图所示。电路由连接到板背面的两节AAA电池供电。

 

 

结论

Linear Technology和ADI公司信号链、电源管理、无线组网产品的结合,使得我们可以设计真正的无线电流检测电路。图3显示了一个实现示例。新型超低功耗斩波运算放大器LTC2063可以精确读取检测电阻上的小压降。包括微功耗ADC和基准电压源在内的整个电路随同检测电阻的共模电压浮空。只要一个小电池,纳安功耗LTC3335开关稳压器便可为该电路供电数年之久,同时利用内置库仑计报告电池累计使用率。LTP5901-IPM无线模块管理整个应用,自动连接到一个高可靠性SmartMesh IP网络。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭