当前位置:首页 > 电源 > 功率器件
[导读]1、L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/

1、L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/放电电路中的电阻R有关。“1UF电容它的充放电时间是多长?”,不讲电阻,就不能回答。

RC电路的时间常数:τ=RC

充电时,uc=U×[1-e(-t/τ)] U是电源电压

放电时,uc=Uo×e(-t/τ) Uo是放电前电容上电压

RL电路的时间常数:τ=L/R

LC电路接直流,i=Io[1-e(-t/τ)] Io是最终稳定电流

LC电路的短路,i=Io×e(-t/τ)] Io是短路前L中电流

 

 

2、设V0 为电容上的初始电压值;

V1 为电容最终可充到或放到的电压值;

Vt 为t时刻电容上的电压值。则:

Vt=V0 +(V1-V0)× [1-e(-t/RC)]

t = RC × Ln[(V1 - V0)/(V1 - Vt)]

例如,电压为E的电池通过R向初值为0的电容C充电,V0=0,V1=E,故充到t时刻电容上的电压为:

Vt=E × [1-e(-t/RC)]

再如,初始电压为E的电容C通过R放电 , V0=E,V1=0,故放到t时刻电容上的电压为:

Vt=E × e(-t/RC)

又如,初值为1/3Vcc的电容C通过R充电,充电终值为Vcc,问充到2/3Vcc需要的时间是多少?

V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =0.693RC

注:Ln()是e为底的对数函数

3、提供一个恒流充放电的常用公式:⊿Vc=I*⊿t/C.再提供一个电容充电的常用公式:Vc=E(1-e(-t/R*C))。RC电路充电公式Vc=E(1-e(-t/R*C))。 关于用于延时的电容用怎么样的电容比较好,不能一概而论,具体情况具体分析。实际电容附加有并联绝缘电阻,串联引线电感和引线电阻。还有更复杂的模式--引起吸附效应等等。供参考。

E是一个电压源的幅度,通过一个开关的闭合,形成一个阶跃信号并通过电阻R对电容C进行充电。E也可以是一个幅度从0V低电平变化到高电平幅度的连续脉冲信号的高电平幅度。电容两端电压Vc随时间的变化规律为充电公式Vc=E(1-e(-t/R*C))。式中的t是时间变量,小e是自然指数项。举例来说:当t=0时,e的0次方为1,算出Vc等于0V。符合电容两端电压不能突变的规律。对于恒流充放电的常用公式:⊿Vc=I*⊿t/C,其出自公式:Vc=Q/C=I*t/C。举例来说:设C=1000uF,I为1A电流幅度的恒流源(即:其输出幅度不随输出电压变化)给电容充电或放电,根据公式可看出,电容电压随时间线性增加或减少,很多三角波或锯齿波就是这样产生的。根据所设数值与公式可以算出,电容电压的变化速率为1V/mS。这表示可以用5mS的时间获得5V的电容电压变化;换句话说,已知Vc变化了2V,可推算出,经历了2mS的时间历程。当然在这个关系式中的C和I也都可以是变量或参考量。详细情况可参考相关的教材看看。供参考。

4、首先设电容器极板在t时刻的电荷量为q,极板间的电压为u.,根据回路电压方程可得:

U-u=IR(I表示电流),

又因为u=q/C,I=dq/dt(这儿的d表示微分哦),

代入后得到:

U-q/C=R*dq/dt,

也就是Rdq/(U-q/C)=dt,然后两边求不定积分,并利用初始条件:t=0,q=0就得到q=CU【1-e-t/(RC)】这就是电容器极板上的电荷随时间t的变化关系函数。顺便指出,电工学上常把RC称为时间常数。

相应地,利用u=q/C,立即得到极板电压随时间变化的函数,

u=U【1-e -t/(RC)】。从得到的公式看,只有当时间t趋向无穷大时,极板上的电荷和电压才达到稳定,充电才算结束。

但在实际问题中,由于1-e-t/(RC)很快趋向1,故经过很短的一段时间后,电容器极板间电荷和电压的变化已经微乎其微,即使我们用灵敏度很高的电学仪器也察觉不出来q和u在微小地变化,所以这时可以认为已达到平衡,充电结束。

举个实际例子吧,假定U=10伏,C=1皮法,R=100欧,利用我们推导的公式可以算出,经过t=4.6*10(-10)秒后,极板电压已经达到了9.9伏。真可谓是风驰电掣的一刹那。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭