当前位置:首页 > 电源 > 功率器件
[导读]在 20kW 增益和 1VPP 输出电压摆幅下,输入电流为 50mAPP。由于 OPA857 的输出电压摆幅是 A 类,而且流过互阻抗的电流是单极的,因此需要正确设置输出共模电压。电流源要具

在 20kW 增益和 1VPP 输出电压摆幅下,输入电流为 50mAPP。由于 OPA857 的输出电压摆幅是 A 类,而且流过互阻抗的电流是单极的,因此需要正确设置输出共模电压。

电流源要具有小于 1.5pF 的低电容来维持带宽。输出要具有高输出阻抗,以控制 OPA857 的输出加载。由于我们所拥有的大多数测试设备都是 50W 的输入和输出阻抗,因此如何才能在不影响测试器件带宽、压摆率及失真性能的同时解决该问题呢?

 

 

这就引出了每种测量的独立解决方案。

我们首先要了解的测量是频率响应,或 S21 参数。为此我们将使用 HP 8753ES 网络分析仪,这是一款 30kHz 至 6GHz 的 S 参数网络分析仪。输入与输出都采用 50W 阻抗和 AC 耦合。分析仪后面有两个端口,可用于控制输入或输出上的 DC 电压。

推荐用于测量 OPA857 频率响应的两个信号链是:

使用高速差分探针,见图 1。

使用高速缓冲器隔离网络分析仪的负载,见图 2。

注意,Test_SD 引脚设置为逻辑高 (+3.3V),以便让内部电流源正常工作。这不仅意味着 Test_IN 输入上出现的 DC 电压将设置出现在 OUT 上的输出电压,而且还需要您实施以下程序,确保 OPA857 针对 AC 响应达到最佳工作状态。

最小化 AC 信号。

设置输入端的 DC 电压,以便输出电压能够围绕其进行摆幅,预设共模电压。例如,如果信号摆幅是 500mVPP,那么 OUT DC 电压就需要设置为 ≤1.4V。否则,输出摆幅在 A 类输出级电流流出时会消波。

完成 #1 电路后,不要留有连接在输出端上的任何东西。探针引线或电压会给负载添加几 pF,改变频率响应。

将 AC 振幅设置为所需的峰峰输出信号摆幅。

 

 

图 1:电路 #1 采用全差分探针连接 HP8753ES。

 

 

图 2:电路 #2 采用 BUF602 连接 HP8753ES。

相同的方法可用来评估脉冲响应或任何时域测量。然而请注意,由于 OPA857 内部电阻器容差都不会高于 ±15%,因此该设置必须挨个器件进行校准。

上面介绍的方法无法测量谐波失真,那么如何才能解决这个新问题呢?

测量谐波失真的传统方法要求:

低失真源

高动态范围频谱分析仪

可通过使用高阶滤波器改善低失真源。频谱分析仪的动态范围可通过过滤掉基波,只测量谐波来改善。设置如图 3 所示。本图中省略了位于被测量器件后面的陷波滤波器。

 

 

图 3:传统谐波失真工作台测量设置。

在 OPA857 实例中存在两个问题。第一个问题是:这里是电压源,而输入信号则需要电流源。内部电流源在这里不能用,因为它没有足够的线性度。因此我们不得不开发低失真电流源来实现测量。第二个问题是频谱分析仪接口。OPA857 的输出是假差分信号,需要驱动轻负载,而频谱分析仪需要单端输入,预计 50W。

电流源具有高输出阻抗。在本实例中,电流源也需要具有低输入电容,因此不能用晶体管电路生成,因为大晶体管本身就有高电容,更不用说封装和电路板寄生了。这可限制该方案使用电压源,需要使用电阻器将其转换成电流。为确保 OPA857 的噪声增益接近 1V/V,与互阻抗配置相同,电源电容应为最低,而且电阻要足够大才能接近这一数字。

在反相引脚上小心插入一个串行电阻器,就可将电源电容降至最低。请使用 OPA857 EVM 了解布局。

在本实例中,增益电阻器是互阻抗增益值的五倍,因此对于 20k 来说,电流源阻抗为 100k。由于噪声增益为

 

 

,因此会出现偏差。这就意味着测量时环路增益损耗可造成大约 1.6dB 的降低,其不会出现在互阻抗配置中。

OPA857 工作在衰减器配置中,因此其输出上的 0.5VPP 需要生成器的 2.5VPP,可进一步增大非线性度。

了解 OPA857 的输出,我们需要测量额定 500负载,并测量放大器的非线性度,因为负载可降至 5k。因此,OPA857 与频谱分析仪之间的接口也不是纯电阻的,因为有大量的信号衰减,而且电阻后面的输出端寄生电容会限制有效带宽。如果在信号链中插入一个有源元件,其失真会比预期测量值好 15dB,能够将测量值降低 0.1dB。在低频率下,这往往是比较容易满足的需求,但是随着频率升高会迅速变得难以控制。该解决方案在这里使用的是针对电信市场开发的 DVGA,因为他可提供足够的增益来补偿信号通道中的衰减。这些 DVGA 具有 200? 的输入阻抗,不仅可将假差分信号转换为全差分,而且还可在所需的频率下提供足够的线性度。DVGA 输出端的变压器可转换放大的全差分信号,并可将其转换为频谱分析仪所预期的单端输入。我们在这里也会有一些衰减损耗,以匹配测试设备的 50? 输入阻抗。OPA857 输出端的最终信号链如图 4 所示。

 

 

图 4:OPA857 使用 PGA870 使 OPA857 负载适应于频谱分析仪。

PGA870 提供支持高线性度的附加增益,可最大限度降低线性度退化。我们通过查看 PGA870 产品说明书发现,在高增益 (> +10dB) 下工作,2 阶及 3 阶谐波失真要比 2VPP 输出摆幅的 90dBc 高。这样可确保 OPA857 测量值降低不足 0.1dB。

 

 

图 5:200? 负载下 PGA870 的谐波失真

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭