当前位置:首页 > 电源 > 功率器件
[导读] 1.引言在电机驱动、UPS等系统中电压的稳定尤为重要,欠压、过压保护是必不可少的,因此通过在芯片内部集成过压、欠压保护电路来提高电源的可靠性和安全性。对功率集成电路

1.引言

在电机驱动、UPS等系统中电压的稳定尤为重要,欠压、过压保护是必不可少的,因此通过在芯片内部集成过压、欠压保护电路来提高电源的可靠性和安全性。对功率集成电路,为提高电路的可靠性,保护电路同样必不可少。保护电路的设计要简单、实用,本文设计了一种CMOS 工艺下的欠压保护电路,此电路结构简单,工艺实现容易,可用做高压或功率集成电路等的电源保护电路。

2.工作原理分析

欠压保护的电路原理图如图1 所示。共由五部分组成:偏置电路、基准电压产生、欠压检测输入、比较器、反馈回路。

本电路的电源电压是15V,M1、M2、M4、R1 是电路的偏置部分,给后级电路提供偏置,电阻R1 决定了电路的工作点,M1、M2、M4 是电流镜;M3、D1产生基准电压,输入比较器的同相端;分压电阻R2、R3、R4是欠压检测输入,输入比较器的反相端;R4、M5是欠压信号的反馈回路;其余M6"M16 组成四级放大比较器。

M3、D1 产生基准电压,输入比较器的同相端,固定不变是11V,当电源电压正常工作时,反相端的欠压检测输给比较器的反相端的电压大于11V,比较器输出为低,M5截止,反馈电路不起作用;当欠压发生时,分压电阻R2、R3、R4 反映比较敏感,当电阻分压后输给反相端的电压小于11V,比较器的输出电压为高,此信号将M5 开启,使得R4两端的电压变为M5两端的饱和电压,趋近于0V,从而进一步拉低了R2、R3 分压后得输出电压,形成了欠压的正反馈。输出为高,欠压锁定,起到了保护作用。

3.参数计算

对于MOS模拟集成电路,各MOS管的工作状态和管子尺寸及宽长比决定了电路的功能和性能,下面结合0.6μm工艺,对电路的电阻及各管宽长比进行估算。设定电路的总功耗Pmth近似为1V。根据总功耗可得总电流:

电路共有八条回路(200/8),可大致分配各路电流20 μ A 左右:故偏置电流20 μ A,即:电阻R1 的阻值大致约;

电路中MOS 管均工作在饱和区,MOS 管的饱和区的公式:

可以估算出M1 的宽长比,进而由电流镜和PMOS 、NMOS的宽长比与迁移率的关系

可得M2、M3、M4 的比值,即:

稳压管的电压值的设定要考虑工艺的实现并且要满足M3 工作在饱和区的条件下选定,这里电压值选为11V;而电阻的设计要考虑面积因素。电阻R2、R3、R4 构成分压器,设定此路中电流是30 μ A,忽略M5 的电阻,可得

其中,R3=300KΩ,R4=70KΩ

比较器的增益要足够的大,设定比较器的开环增益在80dB(104 倍)以上,由于实际制作出的产品往往比理论计算出的放大倍数小很多。因此,我们分配各级的放大倍数分别: Aμ1=50,Aμ2=20,Aμ3=10.总共的放大倍数为各级放大倍数的乘积,即为:

分配各级电流的四路总和不超过110μA(200μA-20×3μA-30μA)。故分配各级电流分别为30 μ A、20 μA、30 μA 和30 μA。这样,我们就可以根据放大倍数和偏置电流来计算出各个管子的宽长比。

对于差分放大级。放大倍数Aμ1=50, 偏置电流为30μA,则两个支路的电流为1 5 μ A 。根据计算公式:

第二级,共源放大级。放大倍数A μ2=20,流过的电流为20 μ A,根据

第三级和第四级推挽CMOS 放大级,由公式:

出M13"M15 各管的宽长比为:

差分对的有源负载管宽长比的计算。从电压角度出发,为了保证所有的管子在信号范围内都工作在恒流区或临界恒流区,而不进入深度线性区,根据总电源电压VDD =15V,我们可以大致分配M9、M10 的静态。则:

计算可得:

4.模拟仿真结果分析

通过上面的计算所得, 利用pspice 对电路进行模拟,在模拟仿真过程中,各管的尺寸有调整,在仿真时,分别增大和减小电源电压来进行电源扫描,波形见图2。 从仿真的波形中可以看出:当增大电源电压时,电压低于14.78V时,欠压锁定;当减小电源电压时,电压低于14.5V 时,欠压锁定。仍可进一步调整参数,来改善增大电源电压时的欠压曲线。

(a)电源扫描的波形(增大电源电压)

(b)电源扫描的波形(减小电源电压)

图2电源扫描的波形图

5.结论

此欠压保护电路结构简单,工艺易实现,可用于功率ic 稳压电源保护中,当采用不同的工艺时,计算参数的方法相同,也可以采用等比例缩小的原则确定参数。对于一般的欠压保护,本电路已经足够。如果对欠压保护精度和灵敏度要求很高的电路,则可在此电路的基础上将稳压输入部分换成稳压源,将比较器选用精度更高的比较器,但这样结构复杂,功耗大,成本高。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭