当前位置:首页 > 电源 > 功率器件
[导读]数据采集及其傅立叶分析是信号处理的重要环节和基本手段。众所周知,利用FFT技术对信号进行频谱分析时,其精度受谱泄漏和栅栏效应等因素的制约。理论研究和实验均表明:对周

数据采集及其傅立叶分析是信号处理的重要环节和基本手段。众所周知,利用FFT技术对信号进行频谱分析时,其精度受谱泄漏和栅栏效应等因素的制约。理论研究和实验均表明:对周期或准周期信号实行按基频整周期同步采集2n个数据,即整周期基2同步采样,可以减小傅立叶分析中的固有误差——谱泄漏和栅栏效应[1]。

对周期信号,通常可采用由锁相环和分频器组成的锁相倍频电路[2],实现对信号的整周期基2同步采样。但对周期缓慢变化的准周期信号,要实现整周期基2同步采样,则非易事。一文提出一款基于单片机周期预测和补偿,从而实现对准周期信号整周期基2号同步采样的倍频电路。该电路倍频精度高、跟踪速度快,能对准周期信号进行预测和补偿,在信号处理和数据采集领域有较好的应用前景。最后给出了基于PC总线实现同步要样的数据采集系统。

1 准周期信号基2倍频电路的实现

1.1 准周期信号基2倍频原理

设待采集的准周期信号的频率为fx,周期Tx。为了实现对输入信号的整周期同步采样,要求对输入信号N倍频,即产生一个频率为Nfx的A/D采样脉冲。又设某基准时钟脉冲信号的频率为fo(fo>>fx),周期为To,对fo进行M分频后,使其恰好等于输入待采集周期信号频率fx的N倍,即:

Nfx=(f0)/M (1)

Tx=M·NT0=N·MT0 (2)

为了实现基2同步采样,通常取:

N=2 n (3)

式(3)中n=4,5,...8。显然,当n的位数确定后,改变M,使M随Tx的变化而变化,就能保证整周期基2同步采样。

1.2 准周期信号基2倍频电路的硬件实现

为了保证对准周期信号基2整周期同步采样有较高的精度,笔者提出一款基于双单片机的基2倍频电路如图1所示。它由过零比较器、二分频器、单片机和或门组成,其中单片机选用AT89C2051,外部晶振频率为12MHz,内部计数频率fo为1MHz,输入信号fx经整形和二分频后直接与两单片机的外中断INT0和INT1相连。图1中A、B、C、D、E、F、G各点波形如图2所示。

其工作原理是:在信号的奇周期Tx1期间,单片机(1)定时器To由输入信号Tx1的上升沿启动,并对Tx1填脉冲计数,Tx1的下降沿关闭定时器To;借助单片机的运算功能,确定M值,并利用定时器T1产生频率为Nfx的输出脉冲信号。定时器To设为内部计数形式,工作方式1(16位计数,初值为0),GATE位为1,利用外部中断INT0引脚上的电平Tx1,直接启动和关才计数器。其计数结果是16位二进制数HL,其中高位为H,低位为L值。

当输入信号频率较低时,计数器T0会溢出触发中断,在中断服务程序中使用单片机内部寄存器(R4)记灵中断次数,以扩展计数范围。利用外部中断INT0引脚上Tx1电平的下降沿产生中断,读取T0的计数值HL和R4的值。通常(3)式中的n可根据输入信号的频率,智能地选取4到8位的二进制数,(2)式中的M值由下式给出:

M=R4HL N (4)

显然M为16位二进制数,因此设置定时器T1为内部计数方式,GATE位为1。当输入信号频率较高时,选工作方式2(8们,初值自动重装载);当输入信号频率较低时,选工作方式1(16位)。定时器T1的初值取决于上一奇周期期间测得的M值,当计数溢出中断时,在中断服务程序中使PLO输出电平翻转,即获得fx的N倍频的方波信号。

同理,可实现单片机(2)在偶周期Tx2期间,输出N倍频的方波信号。可见当输入单片机的外部信号?x每产生一个周期脉冲,在其输出端就会有N个输出脉冲,用输出脉冲去触发A/D板卡采集,即实现了N倍频的整周期采样。

1.3 准周期信号的周期预测

上述方法实现整周期采样时,是把这一周的周期值作为下一周的周期来计算采样脉冲输出频率的。对周期性信号,周期固定不会影响结果;但对准周期信号,周期是渐变的,会带来较大的误差。为了减少或补偿这种误差,本设计借助单片机的运算和数据处理功能,分别对下一周期进行周期预测。即利用前m个周期的T值,对下一个周期作出预测,再以预测的M来设置定时器T1的初值。用拉格朗日线性插值法可预测周期[3],如图3所示。提取最近两周的周期值,推算下一周的周期值。

图3中Tj为第j周终了时刻测得的周期值,Tj-1为第j-1周终了时刻测得的周期值,Tj+1为要预估的下一周终了时刻的周期值,则可得预估公式:

Tj+1=2Tj-Tj-1=Tj±ΔTj (5)

由此可得:

Mj+1=2Mj-Mj-1=Mj±ΔMj (6)

2 基于PC总线控制的数据采集系统

基于PC总线的同步采样系统框图见图4,它主要由地址译码器、单片机倍频电路、A/D转换器组成。各模块功能如下:

地址译码:PC机中用户可使用0300H~031FH地址,采用与非门74LS133对PC总线的地址信号A0~A9译码,端口地址为030FH和030FH。

单片机倍频电路:产生同步信号进行同步采样,保证信号截断长度正好是信号周期的整数倍。

A/D转换器:采用AD678芯片实现模数转换。AD678是带采样保持器的12位A/D转换器,其精度为2-12=1/4096=0.024%,转换时间为5μs,其工作速率满足采样频率的要求。

3 性能及误差分析

(1)输入信号上下限频率fxH和fxL的确定

当输入信号频率较高时,(3)式中的n取4位二进制,考虑到单片机的中断响应时间需要3~8个T0,因此由(2)式可求得:

Txmin=8х24T0+TP=128μs+TP (7)

式(7)中的TP为单片机周期预测所需的时间,设约为72μs。

当输入信号频率较低时,(3)式中的n取8位二进制,(4)式中的M可取16位二进制的最大值,因此由(2)式可求得:

Txmax=28х216T0≈16s (8)

则由(7)、(8)两式可确定:

fxH≤5kHz和fxH≥0.1Hz

(2)误差分析

根据(5)式估算的周期值,如果准周期信号的周期变化是均匀的,即遵从匀变速规律,由此引入的误差为0;如果周期变化是非均匀的,则仍会带来一定误差。在许多实际应用场合(如旋转机械的起停过程)周期主要是匀变速或接近匀变速,而少许的偏离经(5)式的修正后影响很小。其它的计数误差和单片机中断引起的误差,可看作系统误差,由单片机修正。

本文介绍的准周期信号同步数据采集系统,借助单片机的周期预测功能,对准周期信号智能倍频,从而实现整周期基2同步采样,进而大大消除频谱分析中的泄漏误差和栅栏效应,在机械故障诊断、信号测试等相关领域具有很强的实用性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭