当前位置:首页 > 电源 > 功率器件
[导读]在本系列文章的第一部分中,运算放大器从有限增益单极放大器近似为无限增益单极运算放大器,推导出跨阻放大器电路的增益,如图1所示。在本文的第二部分,我们将研究其后果。

在本系列文章的第一部分中,运算放大器从有限增益单极放大器近似为无限增益单极运算放大器,推导出跨阻放大器电路的增益,如图1所示。在本文的第二部分,我们将研究其后果。

 

 

图1:一个看似简单的电路只有两个器件:运算放大器和反馈电阻。

从第一部分得知,推导增益即跨阻抗为:

 

 

极点是:

 

 

放大器增益使我们有机会将控制理论应用于电路。这个例子将说明控制理论在理解电路动态特性时的重要性和实用性。逐步实施,而不是一股脑全堆进来,希望这样能够对控制技术及其应用方式有深入了解。

极点对(二次)多项式通常表示为:

 

 

放大器的谐振时间常数τn = 1/ωn = 1/(2 x π x fn)和阻尼ζ分别为:

 

 

当ζ<1时,极点变为复数极点对,极角为:

 

 

对于实极点,ζ > 1且φ = 0。

对于恒定组(或包络)时延(最大平坦包络延迟/MFED或贝塞尔)响应,相位随频率线性减小,并且发生在φ = 30o的极角处。所有频率的时延都是相同的,保持波形不变。然后:

 

 

对于跨阻放大器MFED响应:

 

 

对于临界阻尼(没有过冲的最快阶跃响应),ζ = 1且τT = 4 x τi或fT = fi/4。两个极点都是fi/2。

随着RR变大、fi减小,放大器在vix中显示出更大的过冲。在某种程度上,这对于Z-meter是有利的,因为极角φ = 45°,阻尼ζ = cos(φ) = cos(45o) ≈ 0.707,并且频率(或幅度)响应是恒定或平坦的,接近带宽频率。这就是最大平坦幅度(MFA)频率响应。对于稳态(频域)应用,MFA响应是最佳的。对于具有理想阶跃响应的瞬态(时域)应用,MFED响应是最佳的。(在示波器垂直放大器的设计中,优化两种响应的标准是冲突的。)

运放速度和放大器稳定性

慢运放具有低fT且τT >> τi,导致两个实极点离得比较远。在极限值:

 

 

这是原点和fi处的极点。fT必须足够小以保持fT << fi。然而,随着fT减小,环路增益减少,可能不足以维持容许的运算放大器增益误差。在这种情况下,精度需要一定的速度。

随着运放fT的增加,Zm的阻尼减小,稳定性降低。对于给定的ς和fi:

 

 

若fT = 1MHz且G0 = 105,则fG = 10Hz,并且临界阻尼回路(ζ = 1)的fi = 40Hz。假设Ci = 10pF,那么RR = 398MΩ,这样对于任何较小的值都可以保持fi > 40Hz。

显示了闭环极点随着fT(更快的运放)的增加而移动的情况。在原点和fi(–1/τi)处的分离极点在fi/2(此时π = 1)处聚集在一起,然后变为复数极点对。随着fT增加,极角增加并且ζ减小。放大器变得不稳定,响应更加振荡。

只要变化的参数(图2中的fT或τT)同时出现在多项式的s2和s项中,图中就会显示极点移动的位置或轨迹。放大器在无限fT时阻尼最小,当τT → 0s时极点位置在极限值:

本文引用地址:http://www.eepw.com.cn/article/201811/394174.htm

 

 

在jxω轴上有两个值,其响应是稳定的(而不是振荡的):原点和±jx ∞处。两者都是无限的,(Zero(0)是无穷小的)。当τT → 0s时,极点多项式的s中的两个项接近零,留下恒定的1项,并且不受频率影响。在极限情况下,极点位于jxω轴上,ζ= 0(振荡器的条件),但在s的有限值处,它们的幅度为零。极点频率很高,阻尼不再重要。它们与fi相距太远而不会影响环路动态。这是理想运算放大器的条件。因此,我们可以得出结论,对于非常慢或非常快的运算放大器,极点是充分分离的,以使响应稳定。只有在fT的范围内,这时运算放大器和Ci极点太靠近,阻尼在足够低的极点频率fn处过度降低,同时放大器中发生幅度相当大的振荡。

再回到跨阻放大器,如果运算放大器几乎是理想的,也就是说,速度快到τT ≈ 0s,则极点多项式大约为1。对于足够快的运算放大器,fT >> fi,而且极点分开,就会有稳定的环路。为了提供额外的阻尼,使运算放大器fT(和环路增益)不会过低,电容器Cf需要通过RR分流。然后用包含Cf的电路代数计算:

 

 

极点对参数为:

 

 

Cf的作用是在二次系数中将τf加到τi,更重要的是加到线性项中的τT,这会增加阻尼。因为τi = τT,所以:

 

 

对于临界阻尼,设π = 1;那么τT = (3 + 2 x √2) x τi ≈ 3.414 x τi且τn ≈ 1.848 x τi。如果没有Cf(Cf = 0pF),如先前所计算的,τT = 4 x τi。若有Cf,在相同的动态响应下,运算放大器可以更快,即具有更高的G0并实现更高的精度。

频率响应幅度和相位是:

 

 

对于理想的快速运算放大器(τT = 0s)并且当Cf = Ci(τf = τi)时,在频率fg(或ωg)处具有响应:

 

 

如果fi = 10 x fg,那么幅度误差≈0.5%。因为fi = 10 x fg,相位误差 ≈ 6o。相位误差对频率效应比对幅度误差更敏感。这在阻抗计电路设计中很重要,有时在光电探测放大器中也很重要,因为光电探测波形要与一些其它波形同步。

避免大反馈电阻的电路

对于一些带跨阻放大器的Z-meter(ZM)设计,RR要足够大,即10MΩ或更大。当RR变得非常大时,要得到期望的阻尼,分流Cf必须很小,并且电阻分流寄生电容还可能过大。为了避免这个问题,可以使用以下电路代替。

 

 

图3:使用该电路避免电阻分流寄生电容过大。

要让运算放大器成为高增益单极运算放大器,G ≈ –1/s x τT(参见本系列文章第一部分有关G的推导)。反馈分频器传递函数是:

 

 

且τf = RR x Cf。当电路用Rp = R1||R2求解时:

 

 

理想运算放大器(τT = 0s)的Zm降低到:

 

 

对于Rp = 0Ω,跨阻进一步降低至:

 

 

如果在输出与RR和Cf之间插入快速×1缓冲放大器,则R1和R2分压器输出电阻不需要太小(Rp << RR)。那么当Rp = 0Ω且运算放大器具有τT时:

 

 

该电路与没有输出分频器的情况有两个不同:RR和τT都有效地增加了1/Hdiv。

结语

通过本文两部分的阐述可以看出,即使是只有两个器件的简单电路也可能涉及复杂的动态推导。设计人员有时会避免使用这些推导来减少数学计算的麻烦,但是使用这些公式可以更好地了解给定电路在各种条件下的性能表现。我们介绍的跨阻放大器分析可为这样的电路设计提供一个模板,并提供如何分析放大器动态特性的指导性示例。

不要因为立方或更高次多项式而拒绝使用s域代数来解决电路动态问题。我们在本实例中遇到了一个立方项,但没必要去解它,因为通过简化可将多项式降为二次方程,方便以后的分析计算。这种情况很常见,因为电路在设计阶段常常被模块化,它们要么彼此隔离,要么通过受控端口阻抗进行受控交互。设计中可以应用模板方案,但通常限于s域中的二次方程。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在下述的内容中,小编将会对仪表放大器公式进行详细的推导,如果仪表放大器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 放大器 仪表放大器

一直以来,差分放大器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编本文将介绍光激活差分放大器电路的设计,详细内容请看下文。

关键字: 放大器 差分放大器

本文将进行运算放大器负压产生电路设计分析,通过这篇文章,小编希望大家可以对该电路的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 放大器 运算放大器 电路

以下内容中,小编将对通过电路图分析输入滤波电容可能引起的问题,希望本文能帮您增进对输入滤波电容的了解,和小编一起来看看吧。

关键字: 电容 滤波电容

以下内容中,小编将对三运放仪表放大器的放大倍数进行分析,希望本文能帮您增进对三运放仪表放大器的了解,和小编一起来看看吧。

关键字: 放大器 三运放仪表放大器

以下内容中,小编将对以往在设计反相放大器的时候碰见的一个设计坑点进行介绍,希望本文能帮您增进对反相放大器的了解,和小编一起来看看吧。

关键字: 放大器 反相放大器

通过这篇文章,小编希望大家可以对推挽放大器的工作机制以及推挽放大器常用的两个设计电路有所认识和了解

关键字: 放大器 推挽放大器

今天,小编将在这篇文章中为大家带来推挽放大器工作原理和实际应用电路图的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 放大器 推挽放大器

变压器的一次和二次绕组的极性相反,这大概也是Flyback名字的由来:a.当开关管导通时,变压器原边电感电流开始上升,此时由于次级同名端的关系,输出二极管截止,变压器储存能量,负载由输出电容提供能量。

关键字: 变压器 电容 开关电源

精心选择如钽电容这样的无源元件,可以提升便携式设备内充电器控制和储能系统的整体性能。

关键字: 钽电容 电容 储能系统
关闭
关闭