• 移相全桥电路中的原边电流波形与副边整流电压波形振荡分析

    在电力电子领域,移相全桥电路作为一种高效、灵活的电能转换拓扑结构,被广泛应用于各种大功率电源和变换器中。然而,在实际应用中,移相全桥电路的原边电流波形和副边整流电压波形常常会出现振荡现象,这不仅影响电路的稳定性和效率,还可能对电路中的元器件造成损害。

  • ESS中双向CLLLC谐振变换器的控制方案

    单级隔离转换器,如双向capacitor-inductor-inductor-inductor-capacitor(CLLLC),是储能系统(ESSs)中一种流行的转换器类型,以节省系统成本和提高功率密度。CLLLC的增益曲线较平坦,但当开关频率(f s)高于串联谐振频率(f r)时,增益曲线将不希望地平坦。变压器和mosfet的寄生电容也会显著影响变频器的增益[1 ],从而导致变频器的输出电压失控。在这个功率提示中,我将介绍一种CLLLC控制算法和一种同步整流器(SR)控制方法来消除这种非线性,使用一个3.6kw的原型转换器来验证其性能。图1是一个住宅ESS的方框图。

  • 弹性电池系统的被动故障安全技术

    可充电锂离子(Li-ion)电池是不可或缺的分散能源。根据《巴黎协定》、《欧洲绿色协议》和温室气体排放定价,电化学储能方案的使用在广泛的应用中具有战略意义。这涵盖了从为军事部门等分散单位供电到用于医院和数据中心等不间断电源(UPS)系统,从存储内部光伏系统产生的供个人使用的能源到支持运行电池电机,例如电池电动汽车 (BEV)、电动自行车、电动踏板车和电动工具。

  • 动态调整负输出电压

    有产生负输出电压的标准技术,并且有动态调整输出电压的众所周知的方法。我希望在本文中解决的缺失环节将这两种技术与简单的电平转换电路结合起来。

  • 反激式转换器设计注意事项

    反激式转换器具有众多优点,包括成本最低的隔离式电源转换器、轻松提供多个输出电压、简单的初级侧控制器以及高达 300W 的功率传输。反激式转换器用于许多离线应用,从电视到手机充电器以及电信和工业应用。它们的基本操作可能看起来令人生畏,而且设计选择很多,特别是对于那些以前没有设计过的人来说。让我们看看 53 VDC 至 12V、5A 连续导通模式 (CCM) 反激式的一些关键设计注意事项。

  • 服务器电源设计的五个主要趋势

    由于服务器对于处理数据通信至关重要,因此服务器行业与互联网同步呈指数级增长。尽管服务器单元最初是基于PC架构的,但服务器系统必须能够处理日益增长的网络主机数量和复杂性。

  • 将 FET 用于电压控制电路的指南,第 2 部分

    之前我们研究了 FET 压控电阻器、基本压控电阻器电路以及平衡或推挽压控电阻器 (VCR) 电路。接下来,我们来看看带反馈的 N 沟道 JFET 衰减器电路(图 8)。

    电源
    2024-12-17
    电压控制 FET
  • 将 FET 用于电压控制电路的指南,第 1 部分

    我很高兴在我们的行业中仍然有一些公司在制造精密、分立的晶体管;线性集成系统是我遇到过的最好的系统之一。有如此多的应用需要使用优质分立元件而不是集成电路来设计电路。

    电源
    2024-12-17
    电压控制 FET
  • 减少 MLCC 的压电效应和可闻噪声

    随着 MLCC(或陶瓷电容器)因其低成本和薄型而在电子电路中日益普及,随着越来越多的电子设备趋向于手持式,其固有的压电效应表现出的可听噪声可能成为一个问题。

  • 寄生效应如何产生意外的 EMI 滤波器谐振

    电磁干扰 (EMI) 被誉为电源设计中最困难的问题之一。我认为这种声誉在很大程度上来自这样一个事实:大多数与 EMI 相关的挑战并不是通过查看原理图就能解决的。这可能会令人沮丧,因为原理图是工程师了解电路功能的中心位置。当然,您知道设计中有一些原理图中没有的相关功能,例如代码。

  • 两个简单的隔离电源选项,功率为 8 W 或更低

    各种工业和汽车系统都使用隔离式偏置电源。大多数现有方法使用反激式或推挽式转换器来实现隔离偏置电源需要大量的设计工作,并且依赖于低漏感隔离变压器。

  • 如何设计电池管理系统

    电池供电的应用在过去十年中已变得司空见惯,此类设备需要一定程度的保护以确保安全使用。电池管理系统 (BMS) 监控电池和可能的故障情况,防止电池出现性能下降、容量衰减甚至可能对用户或周围环境造成伤害的情况。 BMS 还负责提供准确的充电状态 (SoC) 和健康状态 (SoH) 估计,以确保在电池的整个生命周期内提供信息丰富且安全的用户体验。设计合适的 BMS 不仅从安全角度来看至关重要,而且对于客户满意度而言也至关重要。

  • 如何设计高压 DCM 反相电荷泵转换器

    需要低电流、负高压来偏置先进驾驶员辅助系统中的传感器、声纳应用的超声波换能器以及通信设备。反激式、Cuk 和反相降压-升压转换器都是可能的解决方案,但会受到笨重变压器(反激式和 Cuk)的不利影响,或者控制器的输入电压额定值(反相降压-升压)限制其最大负电压。在本电源技巧中,我将详细介绍转换器的工作原理,该转换器将单个电感器与在不连续导通模式 (DCM) 下运行的反相电荷泵配对。与接地参考升压控制器配合使用,可以以较低的系统成本生成较大的负输出电压。

  • 如何使用非耗散钳位提高反激效率

    在反激式转换器的标准形式中,变压器的漏感会在初级场效应晶体管 (FET) 的漏极上产生电压尖峰。为了防止该尖峰变得过度和损坏,FET 需要一个钳位网络,通常带有耗散钳位,如图1所示。但耗散钳位中的功率损耗限制了反激式转换器的效率。在本电源技巧中,我将研究反激式转换器的两种不同变体,它们使用非耗散钳位技术来回收泄漏能量并提高效率。

  • 如何锁定具有打嗝故障响应的电源转换器

    电源转换器通常设计用于防止出现不良故障。例如,如果转换器输出上消耗的电流过多,则可能会启用过流保护。如果转换器的输出端子意外短路或负载电流超过设计的最大电流,这会很有帮助。其他常见故障情况包括超过热关断跳变点(过热)和输出电压超出范围(过压或欠压)。

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章