在电子工程中,开漏输出(Open-Drain Output)是一种常见的电路输出类型,广泛应用于各种电子设备与系统中。了解开漏输出的工作原理、特性及其应用,对于电子工程师和爱好者来说,是掌握电子电路设计、调试与维护的关键。本文将详细阐述开漏输出的定义、特性、工作原理以及在实际应用中的使用场景。
开漏输出:输出端相当于三极管的集电极.要得到高电平状态需要上拉电阻才行.适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。我们先来说说集电极开路输出的结构。集电极开路输出的结构...
为了学习单片机而去学习单片机的思路是不对的 你问 如何系统地入门学习stm32? 本身就是一个错误的问题 假如你会使用8051 会写C语言 那么STM32本身并不需要刻意的学习。 你要考虑的是 我可以用STM32实现什么? 为什么使用STM32而不是8051?是因为51的频率太低
每次看到stm32的教程,都是让点led灯,对GPIO觉着很是简单。后来者麦知club的小车机器人项目中,屡屡碰壁,是寸步难行,读ds18b20要拉底,拉高;写Oled屏要片选,要命令。在百度里查来查去,大都模样差不多。今天,动
stm32的IO口电路如上图所示:所谓推挽输出:在输出高电平时,P-MOS管导通;低电平时,N-MOS管导通。两个管子轮流导通,一个负责灌电流,一个负责拉电流。推挽输出的低电平为0v,高电平为3.3V.开漏输出:输出低电平时
首先看以下STM32的GPIO的原理图如下:当端口配置为输出时:开漏模式:输出 0 时,N-MOS 导通,P-MOS 不被激活,输出0。输出 1 时,N-MOS 高阻, P-MOS 不被激活,输出1(需要外部上拉电路);此模式可以把端口作为双
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的
推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受
推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受
集电极开路(OC)输出:集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为"0"时,输出也为"0")。对于图1,当左端的输入为“0”时,前
推挽(push-pull):推挽输出的器件是指输出脚内部集成有一对互补的MOSFET,当Q1导通、Q2截止时输出高电平;而当Q1截止导通、Q2导通时输出低电平。一个导通另一个就截止。集电极开路:输出端相当于孤立三极管的集电极. 要
首先我们来建立开漏输出与推挽输出的模型吧!这两幅图是开漏输出的简化模型!推挽输出实际上应是把图三的电阻也换成一个开关(即场效应管),当上面开关接通,下面关断时,输出高电平;当上面开关关断,下面开关接通时,输
推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受
开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。它可以吸收很大的电流,但是不能向外输出电流。所以,为了能