波形发生器已有较多使用,各大机械公司均具备波形发生器产品。上篇文章中,小编为大家带来一篇波形发生器设计实例,讲解了如何利用数字频率合成技术设计高速任意波形发生器。本文波形发生器相关内容,为上篇文章的余下部分,一起来了解下吧。
波形发生器为常用器件,正因如此,波形发生器具备较强现实意义。对于波形发生器,诸多朋友均存在一定兴趣。此外,小编在往期带来诸多波形发生器相关文章,热爱波形发生器的朋友可翻阅哦。本文中,小编对于波形发生器的讲解主要在于对高速任意波形发生器的工作原理加以介绍。
设计要求 1.设计一个能测量方波信号频率的频率计,测量结果用十进制数显示。 2.测量的频率范围是110KHz,分成两个频段,即1999Hz,1KHz10KHz,用三位数码管显示测量频率,用LED显示表示单
设计要求 1.设计一个能测量方波信号频率的频率计,测量结果用十进制数显示。 2.测量的频率范围是110KHz,分成两个频段,即1999Hz,1KHz10KHz,用三位数码管显示测量频率,用LED显示表示单
引言频率合成技术从20世纪30年代末开始建立,迄今为止,已有近70年的历史,频率合成器也已成为电子系统中不可缺少的标准部件。基本的频率合成技术有直接式频率合成(DS)和锁相式频率合成(PLL)等几种。锁相式频率合成
本文通过对CORDIC算法的工作原理进行分析,给出了基于CORDIC算法和FPGA实现数字频率校正的实现方案。仿真结果证明,该方法可以实现标准的正弦波和余弦波信号,可以直接作为频偏校正单元来对数字频率信号进行校正。
设计要求 1.设计一个能测量方波信号频率的频率计,测量结果用十进制数显示。 2.测量的频率范围是110KHz,分成两个频段,即1999Hz,1KHz10KHz,用三位数码管显示测量频率,用LED显示表示单
设计要求 1.设计一个能测量方波信号频率的频率计,测量结果用十进制数显示。 2.测量的频率范围是110KHz,分成两个频段,即1999Hz,1KHz10KHz,用三位数码管显示测量频率,用LED显示表示单