电路原理:使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电
电路原理:使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电
电路原理:使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电
电路原理:使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电
电路原理:使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电
摘要:本文介绍基于FPGA控制的温度检测无线发射接收系统。本系统采甩EPlKl000C208-3作为控制核心,系统比较温度是否超出人体最佳温度范围,如果过高则发出降温信号,如果过低则发出升温信号;得出需要加温还是降温的
摘要:本文介绍基于FPGA控制的温度检测无线发射接收系统。本系统采甩EPlKl000C208-3作为控制核心,系统比较温度是否超出人体最佳温度范围,如果过高则发出降温信号,如果过低则发出升温信号;得出需要加温还是降温的