电动车控制系统

关注96人关注
我要报错
  • 基于CAN总线的电动车控制系统设计方案

    随着现代汽车的快速发展,汽车电子设备不断增加,传统的接线方式已远远不能满足汽车愈加复杂的控制系统要求,汽车控制局域网CAN总线应运而生,它广泛应甩于汽车电子控制系统

  • 基于LPC2132的双驱电动车控制系统设计(二)

    3.2 全桥驱动电路的逻辑控制电路换相控制逻辑包括根据当前转子的位置控制电桥上下桥臂,正确给出绕组通电;通过对绕组通电的时间比例控制速度;对电桥实施死区保护,防止烧毁

  • 基于LPC2132的双驱电动车控制系统设计(一)

    论文详细分析了无刷直流电机的驱动控制,设计了基于ARM7 LPC2132微处理器的电动汽车双后轮驱动控制系统,该智能控制器能够实现电动汽车前进.后退.自动巡航.电子差速等电动汽车基本行使功能,同时硬件具有电机过流保护.电池欠压保护及串口通信等功能,很好地满足了实际使用要求.

  • 基于DSP的电动车控制系统设计

    1 引 言 2001年,美国发明家Kamen发明了一种新型的方便快捷的两轮交通工具“Segway”,行走平衡控制技术成为全球机器人控制技术的研究热点。以平行双轮电动车作为移动平台为机器人的研究提供了技术支持,

  • 基于DSP的电动车控制系统设计

    1 引 言 2001年,美国发明家Kamen发明了一种新型的方便快捷的两轮交通工具“Segway”,行走平衡控制技术成为全球机器人控制技术的研究热点。以平行双轮电动车作为移动平台为机器人的研究提供了技术支持,

  • 基于CAN总线的电动车控制系统设计

    针对电动汽车具有良好的能源和环保等性能,提出一种基于CAN总线的电动车控制系统设计方案,该控制系统能提高电动车控制系统间的通信可靠性,实现电池管理系统、电机控制器、充电机和整车控制器的实时通信和集中管理,使电动车运行更加实时和稳定。详细论述了系统的总体结构、CAN通信协议协议的制定、节点硬件电路设计及软件设计。经过实验,各节点间通信实时可靠,验证了电动车控制系统的可靠性和正确性。

  • DSP在平行双轮电动车控制系统中的应用

    2001年,美国发明家Kamen发明了一种新型的方便快捷的两轮交通工具“Segway”,行走平衡控制技术成为全球机器人控制技术的研究热点。以平行双轮电动车作为移动平台为机器人的研究提供了技术支持,同时由于他的行为与火箭飞行和两足机器人有很大的相似性,因而对其运动平衡控制研究具有重大的理论和实际意义。文献[2]介绍了平行双轮电动车的控制器电路,以C8051F020单片机为控制核心通过调整车体平台的运行位置,从而使车体平台始终保持平衡状态。然而其并没有考虑载人、载物的因素以及转向和特殊路面、打滑等方面。再者,作为一种交通工具,由于没有考虑初始自平衡的设计,将会给以后的产业化进程提出新的挑战。因此需要寻找控制方法、原理均不同的其他控制理论来设计,如模糊控制、智能控制等。 一般的单片或多片微处理器不能满足复杂、先进的控制算法时,DSP成为这种应用场合的首选器件。TI公司推出的面向运动控制、电动机控制的TMS320x24xx系例DSP控制器,把一个16位的定点DSP核和用于控制的外设、大容量的片上存储器集成在单一芯片上,能够实现软件包括电动机状态值的采样与计算,控制算法的实施以及PWM信号的输出,此外还包括故障检测与保护、数据交换与通信等。与单片机相比,在电机控制系统设计中,采用TMS320LF2407A具有更有效的控制能力,从而减小整个系统的成本。

  • DSP在平行双轮电动车控制系统中的应用

    2001年,美国发明家Kamen发明了一种新型的方便快捷的两轮交通工具“Segway”,行走平衡控制技术成为全球机器人控制技术的研究热点。以平行双轮电动车作为移动平台为机器人的研究提供了技术支持,同时由于他的行为与火箭飞行和两足机器人有很大的相似性,因而对其运动平衡控制研究具有重大的理论和实际意义。文献[2]介绍了平行双轮电动车的控制器电路,以C8051F020单片机为控制核心通过调整车体平台的运行位置,从而使车体平台始终保持平衡状态。然而其并没有考虑载人、载物的因素以及转向和特殊路面、打滑等方面。再者,