摘要:给出了一种运用于高压DC-DCBUCK转换器的新型高,性能误差放大器的设计方案。其核心模块采用差分运算跨导(OTA)三级放大结构来实现高增益,低时延等性能,同时采用0.6BCDHSPICE模型进行了仿真。结果表明:不同条件下的共模抑制比(CMRR)、电源抑制比(PSRR)分别在120dB和70dB左右,瞬态上升和下降时延均在百纳秒级,且变化范围很小。
许多雷达系统要求低相位噪声以最大限度抑制杂波。
许多雷达系统要求低相位噪声以最大限度抑制杂波。高性能雷达需要特别关注相位噪声,导致在降低频率合成器的相位噪声和表征频率合成器部件的相位噪声方面投入了大量的设计资源。
PSRR是一个常常被误解而且很少被用到的规格。了解模拟电路的PSRR(电源抑制比)是提高混合信号系统整体性能的重要步骤。事实上,ADC(模数转换器)、DAC(数模转换器)和运
2013年TI制胜解决方案之——高输入电压、低噪音电源解决方案。该方案主要面向医疗、车载以及工业等对噪音敏感的领域。
一般基于自偏置的基准电路,由于MOS管工作在饱和区,其工作电流一般在微安级,虽然可以适用于大部分消费类电子芯片的应用,但对于一些特殊应用,如充电电池保护芯片,则无法
PSRR:关于开环闭环D类放大器 过去,电源抑制比(PSRR)就已成为一种测量放大器抑制电源输出噪声性能的优异测量方法。但是,由于出现了越来越多的D类放大器,以及其拥有
研究电源噪声时有三个熟悉的术语,分别是:PSRR-DC、PSRR-AC和PSMR。其中PSRR表示电源抑制比,PSMR表示电源调制比。为了理解电源噪声入口,需要了解这些术语,以及它们对于ADC的含义。 一般而言,这些术语告诉我们容