RTD

关注246人关注
我要报错
  • RTD 温度测量系统的 ADC 要求

    温度系统中可以使用多种类型的温度传感器。要使用的温度传感器取决于测量的温度范围和所需的精度。除了传感器之外,温度系统的精度还取决于传感器所连接的模拟数字转换器 (ADC) 的性能。在许多情况下,需要高分辨率 ADC,因为来自传感器的信号幅度非常小。Sigma delta (SD) ADC 适用于这些系统,因为它们是高分辨率设备。它们还具有温度系统所需的片上嵌入附加电路,例如激励电流和参考缓冲器。本文介绍了常用的 3 线和 4 线电阻温度检测器 (RTD)。它描述了将传感器连接到 ADC 所需的电路,并解释了 ADC 所需的性能要求。

    嵌入式分享
    2024-10-13
    RTD ADC
  • 实现功能安全的测温系统RTD设计

    在这两部分系列的第一篇文章中,我们讨论了一个功能安全系统的电阻温度探测器(RTD)电路设计,并介绍了Route 2S组件认证过程的考虑因素,这将在第二篇文章中进行更详细的讨论。认证一个系统是一个漫长的过程,因为系统中的所有组件都必须检查潜在的故障机制,并且有各种方法来诊断故障。使用已经经过认证的部件可以在认证过程中减轻此工作负载。

  • 提高精密 RTD 温度测量解决方案的 EMC 性能

    您是否想知道如何设计具有高电磁兼容性 (EMC) 性能的精密温度测量系统?本文将讨论精密温度测量系统的设计注意事项以及如何在保持测量精度的同时提高系统的 EMC 性能。我们将以 RTD 温度测量为例,介绍测试结果和数据分析,使我们能够轻松地从概念转向原型,从概念转向市场。

    嵌入式分享
    2024-08-16
    EMC RTD
  • 优化 RTD 温度传感系统:参考设计

    在本系列关于 RTD 的三部分文章的第一篇文章中,我们介绍了温度测量挑战、RTD 类型、不同配置以及 RTD 配置电路。在第二篇文章中,我们概述了三种不同的 RTD 配置:2 线、3 线和 4 线。在本系列的最后一篇文章中,我们将探讨 RTD 系统优化、外部组件的选择以及如何评估最终的 RTD 系统。

  • 设计一个无校准RTD温度测量系统,第一部分PT100探头特性分析

    电阻温度检测器(RTD)温度测量系统是否有一致的误差?高精度的RTD温度测量系统可以设计而不需要校准吗?本文介绍了一种高精度RTD温度测量系统,该系统采用误差补偿的方法,在不需要校准的情况下,在-25℃到+140℃的范围内,实现了等于。

  • 设计一个无校准RTD温度测量系统,第二部分激励源和采样电阻选择

    一般来说,励磁电流越大,温度测量的灵敏度就越高,从而提高了温度测量的性能。然而,较大的励磁电流并不总是更好的。一方面,激发电流在RTD上产生的热能与电流的平方成正比,电流越大,自热效应越大,这可能对温度测量产生重大影响。另一方面,它受到电流源的顺应电压的限制.因此,在选择励磁电流值时,必须同时考虑自热效应和顺应性电压。

  • 设计一个无校准RTD温度测量系统,第三部分误差分析测试

    在计算系统的理论性能后,有必要通过测量验证系统的实际性能。对于温度测量系统,最重要的性能指标是测量温度值与真实温度值之间的误差。因此,为了测量这一规格,需要一个精确的、大范围的温度源。偶然校准具有丰富的温度校准经验,其产品为各种温度测量场景提供了可靠的标准。

  • 设计一个无校准RTD温度测量系统,第四部分误差校准和精度测试

    接上一篇,尽管14条RTD测量通道的温度测量误差曲线具有一致的趋势,但由于产量的变化,它们的斜率和截流量在一定程度上有所不同。为了对这一过程产生的所有RTD测量通道进行误差补偿,需要找到14条温度测量误差曲线所包围的区域的中间曲线。更合适的方法是使用一个分段函数来描述错误函数,它分为两个部分:零和零。

  • RTD比率式温度测量的模拟前端设计考虑

    在温度测量领域,电阻式温度检测器(RTD)与Σ-Δ型模数转换器(ADC)的结合使用已经成为一种常见且高效的解决方案。然而,许多系统设计人员在实际应用中面临一个共同难题:如何在ADC数据手册规定的高性能标准下,实现精确的RTD温度测量。本文将从RTD比率式温度测量的基本原理出发,详细探讨模拟前端设计的关键考虑因素,以期帮助系统设计人员实现高精度、低噪声的温度测量系统。

  • 优化 RTD 温度传感系统

    温度测量在许多不同的终端应用中发挥着重要作用,例如工业自动化、仪器仪表、CbM 和医疗设备。无论是监测环境条件还是校正系统漂移性能,高准确度和精度都非常重要。可以使用多种类型的温度传感器,例如热电偶、电阻温度检测器 (RTD)、电子带隙传感器和热敏电阻。与设计一起选择的温度传感器取决于测量的温度范围和所需的精度。对于 –200°C 至 +850°C 范围内的温度,RTD 提供了高精度和良好稳定性的完美组合。

  • 重新设计基于RTD的温度传感器,以适应智能工厂时代

    本文介绍如何快速重新设计电阻温度检测器(RTD)工业温度传感器,以更小尺寸、支持灵活通信和远程配置的产品,满足智能工厂对温度测量器件的需求。使用高度集成的模拟前端(AFE)和IO-Link®收发器可以实现上述目标。

  • 基于AD7124的4线RTD的基础知识,你真的知道吗?

    你了解基于AD7124的4线RTD吗?对于各种各样的产品,制造过程需要高度精确和可靠的温度测量技术。通常通过与传感器直接接触来测量温度,例如通过将传感器浸入到液体中或通过与机器的表面接触来测量温度。除热敏电阻和热电偶之外,由于其快速响应时间和高达几百?V/°C 的出色灵敏度,电阻温度检测器(RTD)尤其适用。它们也可用于–200°C 至+800°C 超宽范围内的测量,且具有近线性行为。RTD 提供多种版本,例如 2 线、3 线或 4 线版本,且具有高度应用灵活性。

  • 高集成度模拟前端AFE AD7124在RTD测温场合的应用

    随着工业生产的发展,温度测量与控制十分重要,温度参数的准确测量对输出品质、生产效率和安全可靠的运行至关重要。作为一家高性能模拟大厂,ADI公司拥有完善的测温/控温方案,从无源的电阻式温度检测器RTD、热电偶Thermocouple (TC),到直接电流/电压模拟量输出、SPI/IIC数字接口输出的半导体温度传感器。

    世健
    2020-03-25
    模拟前端 afe rtd
  • 关于RTD温度测量系统应用解析

    通过AD7124系列等AFE,可以相对轻松地实现RTD温度测量系统。它们提供非常好的高精度、低功耗和低噪声组合,适用于高精度测量应用和节能型便携式设备。此外,这些ADC的集成度和灵活性简化了设计架构,有助于缩短使用不同类型传感器的测量应用(例如,温度、电流、电压等)的设计周期。

  • 适合高精度测量应用的完全集成式4线RTD温度测量系统的简单实现

    ​对于各种各样的产品,制造过程需要高度精确和可靠的温度测量技术。通常通过与传感器直接接触来测量温度,例如通过将传感器浸入到液体中或通过与机器的表面接触来测量温度。

    ADI
    2019-12-27
    afe rtd 激励电流
  • 分析对比:模拟与数字隔离技术

    工业电路设计的工程师都要用隔离技术来解决安全问题、法规监管,以及接地层问题。如果您的电路中做了隔离,就可以在两个点之间交换信息和功率,而不会有实际的电流流动。隔

  • RTD温度测量系统对ADC的要求

    本文介绍常用的3线和4线电阻温度检测器(RTD),以及传感器与ADC接口所需的电路,并说明对ADC的性能要求。RTDRTD适合测量–200°C至+800°C的温度,在该温度范围内,这些器件的响应接近线性。RTD使用的典

  • 采用 LTC2983 测量 18 个两线式 RTD

    单个 LTC2983 温度测量器件能支持多达 18 个两线式 RTD 探头 (如图 1 所示)。每个 RTD 测量包含同时检测由于电流 IS 而在 RSENSE 和 RTD 探头 RTDx 两端所产生的两个电压。对每个电压进行差分检测,而且鉴于 LTC2983 拥有高共模抑制比,因此堆栈中 RTD 的数量并不会对个别测量产生不利影响。