AlexNet层级分析
扫描二维码
随时随地手机看文章
先盗一图,摘自ImageNet Classification with Deep Convolutional Neural Networks(Hinton)
由作者的原文可知,AlexNet模型在训练时使用了两个GPU,所以就出现了一些参数为两个GPU共享,一些参数是GPU独享。在建立此训练模型前,先分析各层的参数关系。
AlexNet模型共有5个卷积层,3个全连接层,前两个卷积层和第五个卷积层有pool池化层,其他两个卷积层没有池化。
第一卷积层:
由AlexNet架构图,第一卷积层的卷积核有96个(两个GPU各用48个),卷积核的尺度为11*11*3(3为RGB通道数),步长stride为4。生成的卷积特征图单元数为55*55*48*2,每个特征图尺度为55*55,由此可知输入图像尺度为227*227(55(单向尺度)*4(步长) + (11(卷积核尺度)-4(步长)) = 227)。因此输入图像单元数为227*227*3*1。
第一池化层:
输入单个特征图尺度为55*55,池化尺度3*3,步长为2,输出池化特征图尺度为27*27((55(单向尺度)-3(池化尺度))/2(步长)+1 = 27)。特征图单元数为27*27*48*2.
第二卷积层:
由AlexNet架构图,卷积核有256个(两个GPU各128个,同时各作用于各GPU内的第一池化层的输出),卷积核尺度5*5*3,步长为1,生成卷积特征图单元数为27*27*128*2,每个特征图尺度为27*27,由此计算输入特征图尺度为31*31(27(单向尺度)*1(步长)+(5(卷积核尺度)-1(步长))= 31)。因此输入特征图单元数为31*31*96。
第二池化层:
输入单个特征图尺度为27*27,池化尺度3*3,步长为2,输出池化特征图尺度为13*13((27(单向尺度)-3(池化尺度))/2(步长)+ 1 = 13)。特征图单元数为13*13*128*2.
第三卷积层:
由AlexNet架构图,卷积核有384个(两个GPU各192个,同时需要共享各自GPU第二池化层的输出),卷积核尺度为3*3*3,步长为1,生成卷积特征图单元数为13*13*192*2,每个特征图尺度为13*13,由此计算输入特征图尺度为15*15(13(单向尺度)*1(步长)+(3(卷积核尺度)-1(步长))=15)。因此输入特征图单元数为15*15*256。
第四卷积层:
由AlexNet架构图,卷积核有384个(两个GPU各192个,同时不共享各自GPU内的第三卷积层输出),卷积核尺度为3*3*3,步长为1,生成卷积特征图单元数为13*13*192*2,每个特征图尺度为13*13,由此计算输入特征图尺度为15*15(13(单向尺度)*1(步长)+(3(卷积核尺度)-1(步长))=15)。因此输入特征图单元数为15*15*384。
第五卷积层:
由AlexNet架构图,卷积核有256个(两个GPU各128个,同时不共享各自GPU内的第四卷积层输出),卷积核尺度为3*3*3,步长为1,生成卷积特征图单元数为13*13*128*2,每个特征图尺度为13*13,由此计算输入特征图尺度为15*15(13(单向尺度)*1(步长)+(3(卷积核尺度)-1(步长))=15)。因此输入特征图单元数为15*15*384。
第五池化层:
输入单个特征图尺度13*13,池化尺度3*3,步长为2,输出池化特征图尺度为6*6((13(单向尺度)-3(池化尺度))/2(步长)+1 = 6)。特征图单元数为6*6*256.
第一全连接层:
输入特征图单元数为6*6*256,输出特征图单元数为4096,全连接参数个数为6*6*256*4096.
第二全连接层:
输入特征图单元数4096,输出特征图单元数为4096,全连接参数个数为4096*4096.
第三全连接层:
即输出层,输入特征图单元数为4096,输出特征图单元数为1000,全连接参数个数为4096*1000.