当前位置:首页 > 芯闻号 > 充电吧
[导读]所谓原子访问,指的是一个线程在访问某个资源的同时能够保证没有其他线程会在同一时刻访问同一资源。Interlocked系列函数提供了这样的操作。所有这些函数会以原子方式来操控一个值。Interlocke

所谓原子访问,指的是一个线程在访问某个资源的同时能够保证没有其他线程会在同一时刻访问同一资源。Interlocked系列函数提供了这样的操作。所有这些函数会以原子方式来操控一个值。

Interlocked函数的工作原理取决于代码运行的CPU平台,如果是x86系列CPU,那么Interlocked函数会在总线上维持一个硬件信号,这个信号会阻止其他CPU访问同一个内存地址。我们必须确保传给这些函数的变量地址是经过对齐的,否则这些函数可能会失败。C运行库提供了一个_aligned_malloc函数,我们可以使用这个函数来分配一块对齐过的内存:

void * _aligned_malloc(

    size_t size,  //要分配的字节数

    size_t alignment //要对齐到的字节边界,传给alignment的值必须是2的整数幂次方

);

Interlocked函数的另一个需要注意的点是它们执行得很快。调用一次Interlocked函数通常只占用几个CPU周期(通常小于50),而且不需要在用户模式和内核模式之间进行切换(这个切换通常需要占用1000个CPU周期以上)。

 

1)原子加减操作InterlockedExchangeAdd函数原型如下:

LONG __cdecl InterlockedExchangeAdd( //对32位值进行操作

  __inout  LONG volatile *Addend, //需要递增的变量地址

  __in     LONG Value //增量值,可为负值表示减法

);

 

LONGLONG __cdecl InterlockedExchangeAdd64( //对64位值进行操作

  __inout  LONGLONG volatile *Addend,

  __in     LONGLONG Value

);

 

2)InterlockedExchange函数用于原子地将32位整数设为指定的值:

LONG __cdecl InterlockedExchange(

  __inout  LONG volatile *Target, //指向要替换的32位值的指针

  __in     LONG Value //替换的值

);

返回值是指向原先的32位整数值。

 

InterlockedExchangePointer函数原子地用于替换地址值:

PVOID __cdecl InterlockedExchangePointer(

  __inout  PVOID volatile *Target, //指向要替换的地址值的指针

  __in     PVOID Value //替换的地址值

);

返回值是原来的地址值。

对32位应用程序来说,以上两个函数都用一个32位值替换另一个32位值,但对64位应用程序来说,InterlockedExchange替换的是32位值,而InterlockedExchangePointer替换的是64位值。

 

当然,还有一个函数InterlockedExchange64专门用来原子地操作64位值的:

LONGLONG __cdecl InterlockedExchange64(

  __inout  LONGLONG volatile *Target,

  __in     LONGLONG Value

);

 

在实现旋转锁时,InterlockedExchange函数极其有用:

//标识一个共享资源是否正在被使用的全局变量

BOOL g_fResourceInUse = FALSE;

...

void ASCEFunc()

{

         //等待访问共享资源

         while(InterlockedExchange(&g_fResourceInUse, TRUE) == TRUE)

                   sleep(0);

         //访问共享资源

         ...

         //结束访问

         InterlockedExchange(&g_fResourceInUse, FALSE);

}

注意,在使用这项技术时要小心,因为旋转锁会耗费CPU时间。特别是在单CPU机器上应该避免使用旋转锁,如果一个线程不停地循环,那么这会浪费宝贵的CPU时间,而且会阻止其他线程改变该锁的值。

 

3)函数InterlockedCompareExchange函数和InterlockedCompareExchangePointer函数原型如下:

LONG __cdecl InterlockedCompareExchange(

  __inout  LONG volatile *Destination, //当前值

  __in     LONG Exchange, //

  __in     LONG Comparand //比较值

);

PVOID __cdecl InterlockedCompareExchangePointer(

  __inout  PVOID volatile *Destination,

  __in     PVOID Exchange,

  __in     PVOID Comparand

);

这两个函数以原子方式执行一个测试和设置操作。对32位应用程序来说,这两个函数都对32位值进行操作;在64位应用程序中,InterlockedCompareExchange对32位值进行操作而InterlockedCompareExchangePointer对64位值进行操作。函数会将当前值(Destination指向的)与参数Comparand进行比较,如果两个值相同,那么函数会将*Destination修改为Exchange参数指定的值。若不等,则*Destination保持不变。函数会返回*Destination原来的值。所有这些操作都是一个原子执行单元来完成的。

当然,这两个函数的64位版本是:

LONGLONG __cdecl InterlockedCompareExchange64(

  __inout  LONGLONG volatile *Destination,

  __in     LONGLONG Exchange,

  __in     LONGLONG Comparand

);

 

4)Interlocked单向链表函数

InitializeSListHead函数用于创建一个空的单向链表栈:

void WINAPI InitializeSListHead(

  __inout  PSLIST_HEADER ListHead

);

 

InterlockedPushEntrySList函数在栈顶添加一个元素:

PSLIST_ENTRY WINAPI InterlockedPushEntrySList(

  __inout  PSLIST_HEADER ListHead,

  __inout  PSLIST_ENTRY ListEntry

);

 

InterlockedPopEntrySList函数移除位于栈顶的元素并将其返回:

PSLIST_ENTRY WINAPI InterlockedPopEntrySList(

  __inout  PSLIST_HEADER ListHead

);

 

InterlockedFlushSList函数用于清空单向链表栈:

PSLIST_ENTRY WINAPI InterlockedFlushSList(

  __inout  PSLIST_HEADER ListHead

);

 

QueryDepthSList函数用于返回栈中元素的数量:

USHORT WINAPI QueryDepthSList(

  __in  PSLIST_HEADER ListHead

);

 

单向链表栈中元素的结构是:

typedef struct _SLIST_ENTRY {

  struct _SLIST_ENTRY *Next;

} SLIST_ENTRY, *PSLIST_ENTRY;

注意:所有单向链表栈中的元素必须以MEMORY_ALLOCATION_ALIGNMENT方式对齐,使用_aligned_malloc函数即可。

 

实例如下:

#include 

#include 

#include 

 

// Structure to be used for a list item; the first member is the

// SLIST_ENTRY structure, and additional members are used for data.

// Here, the data is simply a signature for testing purposes.

 

 

typedef struct _PROGRAM_ITEM {

    SLIST_ENTRY ItemEntry;

    ULONG Signature;

} PROGRAM_ITEM, *PPROGRAM_ITEM;

 

int main( )

{

    ULONG Count;

    PSLIST_ENTRY pFirstEntry, pListEntry;

    PSLIST_HEADER pListHead;

    PPROGRAM_ITEM pProgramItem;

 

    // Initialize the list header to a MEMORY_ALLOCATION_ALIGNMENT boundary.

    pListHead = (PSLIST_HEADER)_aligned_malloc(sizeof(SLIST_HEADER),

       MEMORY_ALLOCATION_ALIGNMENT);

    if( NULL == pListHead )

    {

        printf("Memory allocation failed./n");

        return -1;

    }

    InitializeSListHead(pListHead);

 

    // Insert 10 items into the list.

    for( Count = 1; Count <= 10; Count += 1 )

    {

        pProgramItem = (PPROGRAM_ITEM)_aligned_malloc(sizeof(PROGRAM_ITEM),

            MEMORY_ALLOCATION_ALIGNMENT);

        if( NULL == pProgramItem )

        {

            printf("Memory allocation failed./n");

            return -1;

        }

        pProgramItem->Signature = Count;

        pFirstEntry = InterlockedPushEntrySList(pListHead,

                       &(pProgramItem->ItemEntry));

    }

 

    // Remove 10 items from the list and display the signature.

    for( Count = 10; Count >= 1; Count -= 1 )

    {

        pListEntry = InterlockedPopEntrySList(pListHead);

 

        if( NULL == pListEntry )

        {

            printf("List is empty./n");

            return -1;

        }

 

        pProgramItem = (PPROGRAM_ITEM)pListEntry;

        printf("Signature is %d/n", pProgramItem->Signature);

 

    // This example assumes that the SLIST_ENTRY structure is the

    // first member of the structure. If your structure does not

    // follow this convention, you must compute the starting address

    // of the structure before calling the free function.

 

        _aligned_free(pListEntry);

    }

 

    // Flush the list and verify that the items are gone.

    pListEntry = InterlockedFlushSList(pListHead);

    pFirstEntry = InterlockedPopEntrySList(pListHead);

    if (pFirstEntry != NULL)

    {

        printf("Error: List is not empty./n");

        return -1;

    }

 

    _aligned_free(pListHead);

 

    return 1;

}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭