compressive sensing matlab demo 压缩感知入门
扫描二维码
随时随地手机看文章
压缩感知(Compressed sensing),也被称为压缩采样(Compressive sampling)或稀疏采样(Sparse sampling),是一种寻找欠定线性系统的稀疏解的技术。如果一个线性方程组未知数的数目超过方程的数目,这个方程组被称为欠定,并且一般而言有无数个解。 但是,如果这个欠定系统只有唯一一个稀疏解,那么我们可以利用压缩感知理论和方法来寻找这个解。值得注意的是,不是所有欠定线性方程组都有稀疏解。
压缩感知利用了很多信号中所存在的冗余(换言之,这些信号并非完全是噪声)。具体而言,很多信号都是稀疏的;在适当的表示域中,它们的很多系数都是等于或约等于零。
在信号获取阶段,压缩感知在信号并不稀疏的域对信号进行线性测量。
为了从线性测量中重构出原来的信号,压缩感知求解一个称为L1-范数正则化的最小二乘问题。从理论上可以证明,在某些条件下,这个正则化最小二乘问题的解正是原欠定线性系统的稀疏解
% sparse_in_frequency.m % %This code demonstrate compressive sensing example. In this %example the signal is sparse in frequency domain and random samples %are taken in time domain. close all; clear all; %setup path for the subdirectories of l1magic % path(path, 'C:MATLAB7l1magic-1.1Optimization'); % path(path, 'C:MATLAB7l1magic-1.1Data'); %length of the signal N=1024; %Number of random observations to take K=256; %Discrete frequency of two sinusoids in the input signal k1=29; k2=100; n=0:N-1; %Sparse signal in frequency domain. x=sin(2*pi*(k1/N)*n)+sin(2*pi*(k2/N)*n); % This code demonstrates the compressive sensing using a sparse signal in frequency domain. The signal consists of summation of % two sinusoids of different frequencies in time domain. The signal is sparse in Frequency domain and therefore K random % measurements are taken in time domain. figure; subplot(2,1,1); plot(x) grid on; xlabel('Samples'); ylabel('Amplitude'); title('Original Signal,1024 samples with two different frequency sinsuoids'); xf=fft(x); subplot(2,1,2); plot(abs(xf)) grid on; xlabel('Samples'); ylabel('Amplitude'); title('Frequency domain, 1024 coefficients with 4-non zero coefficients'); %creating dft matrix B=dftmtx(N); Binv=inv(B); % The inverse discrete Fourier transform matrix, Binv, equals CONJ(dftmtx(N))/N. %Taking DFT of the signal xf = B*x.'; %Selecting random rows of the DFT matrix q=randperm(N); %creating measurement matrix A=Binv(q(1:K),:); % 在IDFT矩阵中任选K=256行 %taking random time measurements y=(A*xf); % 对x的fft后的xf(1024-by-1)的数据做IDFT得到256个时域稀疏采样值,通过plot(real(y))和原来的x对比,注意如何在时域中取K=256个采样值 %Calculating Initial guess x0=A.'*y; % 注意:待恢复时域信号xprec的DFT值xp的估计初值x0如何给? y 是时域稀疏采样值 %Running the recovery Algorithm tic xp=l1eq_pd(x0,A,[],y,1e-5); %恢复的xp是频域信号 toc %recovered signal in time domain xprec=real(Binv*xp); % 做IDFT转换到时域 figure; subplot(2,1,1) plot(abs(xf)) % 原信号的频谱 grid on; xlabel('Samples'); ylabel('Amplitude'); title('Original Signal, Discrete Fourier Transform'); subplot(2,1,2) plot(abs(xp),'r') %压缩采样恢复后的信号的频谱 grid on; xlabel('Samples'); ylabel('Amplitude'); title(sprintf('Recovered Signal, Discrete Fourier Transform sampled with %d samples',K)); figure; subplot(2,1,1); plot(x) grid on; xlabel('Samples'); ylabel('Amplitude'); title('Original Signal,1024 samples with two different frequency sinsuoids'); subplot(2,1,2) plot(xprec,'r') grid on; xlabel('Samples'); ylabel('Amplitude'); title(sprintf('Recovered Signal in Time Domain')); %%%%%%%%%%%%%%%%%%漫长的分割线%%%%%%%%%%%%%%%%%%%%%%%%%% % sparse_in_time.m % %This code demonstrate compressive sensing example. In this %example the signal is sparse in time domain and random samples %are taken in frequency domain. close all; clear all; %setup path for the subdirectories of l1magic % path(path, 'C:MATLAB7l1magic-1.1Optimization'); % path(path, 'C:MATLAB7l1magic-1.1Data'); %number of samples per period s=4; %RF frequency f=4e9; %pulse repetition frequency prf=1/30e-9; %sampling frequency fs=s*f; %Total Simulation time T=30e-9; t=0:1/fs:T; %generating pulse train x=pulstran(t,15e-9,'gauspuls',f,0.5); %length of the signal N=length(x); %Number of random observations to take K=90; figure; subplot(2,1,1); plot(t,x) grid on; xlabel('Time'); ylabel('Amplitude'); title(sprintf('Original Signal, UWB Pulse RF freq=%g GHz',f/1e9)); %taking Discrete time Fourier Transform of the signal xf=fft(x); subplot(2,1,2); plot(abs(xf)) grid on; xlabel('Samples'); ylabel('Amplitude'); title('Discrete Fourier Transform of UWB pulse'); %creating dft matrix B=dftmtx(N); Binv=inv(B); %Selecting random rows of the DFT matrix q=randperm(N); %creating measurement matrix A=B(q(1:K),:); % 在DFT矩阵中取前K=90行,B矩阵是481-by-481的 %taking random frequency measurements y=(A*x.'); % y 是90-by-1的频域采样值 % Calculating Initial guess x0=A.'*y; % y 是90-by-1的频域采样值,注意恢复时域信号时初值如何给? %Running the recovery Algorithm tic xp=l1eq_pd(x0,A,[],y,1e-5); toc figure; subplot(2,1,1) plot(t,x) grid on; xlabel('Time'); ylabel('Amplitude'); title(sprintf('Original Signal, UWB Pulse RF freq=%g GHz',f/1e9)); subplot(2,1,2) plot(t,real(xp),'r') grid on; xlabel('Time'); ylabel('Amplitude'); title(sprintf('Recovered UWB Pulse Signal with %d random samples',K)); %%%%%%%%%%%%%%%%%%飘逸的分割线%%%%%%%%%%%%%%%%%%%%%%%%%% % 用到的函数 % l1eq_pd.m % % Solve % min_x ||x||_1 s.t. Ax = b % % Recast as linear program % min_{x,u} sum(u) s.t. -u <= x <= u, Ax=b % and use primal-dual interior point method % % Usage: xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) % % x0 - Nx1 vector, initial point. % % A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm % operates in "largescale" mode, solving the Newton systems via the % Conjugate Gradients algorithm. % % At - Handle to a function that takes a K vector and returns an N vector. % If A is a KxN matrix, At is ignored. % % b - Kx1 vector of observations. % % pdtol - Tolerance for primal-dual algorithm (algorithm terminates if % the duality gap is less than pdtol). % Default = 1e-3. % % pdmaxiter - Maximum number of primal-dual iterations. % Default = 50. % % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. % Default = 1e-8. % % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored % if A is a matrix. % Default = 200. % % Written by: Justin Romberg, Caltech % Email: jrom@acm.caltech.edu % Created: October 2005 % function xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); if (nargin < 5), pdtol = 1e-3; end if (nargin < 6), pdmaxiter = 50; end if (nargin < 7), cgtol = 1e-8; end if (nargin < 8), cgmaxiter = 200; end N = length(x0); alpha = 0.01; beta = 0.5; mu = 10; gradf0 = [zeros(N,1); ones(N,1)]; % starting point --- make sure that it is feasible if (largescale) if (norm(A(x0)-b)/norm(b) > cgtol) disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); AAt = @(z) A(At(z)); [w, cgres, cgiter] = cgsolve(AAt, b, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('A*At is ill-conditioned: cannot find starting point'); xp = x0; return; end x0 = At(w); end else if (norm(A*x0-b)/norm(b) > cgtol) disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); opts.POSDEF = true; opts.SYM = true; [w, hcond] = linsolve(A*A', b, opts); if (hcond < 1e-14) disp('A*At is ill-conditioned: cannot find starting point'); xp = x0; return; end x0 = A'*w; end end x = x0; u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); % set up for the first iteration fu1 = x - u; fu2 = -x - u; lamu1 = -1./fu1; lamu2 = -1./fu2; if (largescale) v = -A(lamu1-lamu2); Atv = At(v); rpri = A(x) - b; else v = -A*(lamu1-lamu2); Atv = A'*v; rpri = A*x - b; end sdg = -(fu1'*lamu1 + fu2'*lamu2); tau = mu*2*N/sdg; rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; resnorm = norm([rdual; rcent; rpri]); pditer = 0; done = (sdg < pdtol) | (pditer >= pdmaxiter); while (~done) pditer = pditer + 1; w1 = -1/tau*(-1./fu1 + 1./fu2) - Atv; w2 = -1 - 1/tau*(1./fu1 + 1./fu2); w3 = -rpri; sig1 = -lamu1./fu1 - lamu2./fu2; sig2 = lamu1./fu1 - lamu2./fu2; sigx = sig1 - sig2.^2./sig1; if (largescale) w1p = w3 - A(w1./sigx - w2.*sig2./(sigx.*sig1)); h11pfun = @(z) -A(1./sigx.*At(z)); [dv, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; return end dx = (w1 - w2.*sig2./sig1 - At(dv))./sigx; Adx = A(dx); Atdv = At(dv); else w1p = -(w3 - A*(w1./sigx - w2.*sig2./(sigx.*sig1))); H11p = A*(sparse(diag(1./sigx))*A'); opts.POSDEF = true; opts.SYM = true; [dv,hcond] = linsolve(H11p, w1p); if (hcond < 1e-14) disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; return end dx = (w1 - w2.*sig2./sig1 - A'*dv)./sigx; Adx = A*dx; Atdv = A'*dv; end du = (w2 - sig2.*dx)./sig1; dlamu1 = (lamu1./fu1).*(-dx+du) - lamu1 - (1/tau)*1./fu1; dlamu2 = (lamu2./fu2).*(dx+du) - lamu2 - 1/tau*1./fu2; % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0 indp = find(dlamu1 < 0); indn = find(dlamu2 < 0); s = min([1; -lamu1(indp)./dlamu1(indp); -lamu2(indn)./dlamu2(indn)]); indp = find((dx-du) > 0); indn = find((-dx-du) > 0); s = (0.99)*min([s; -fu1(indp)./(dx(indp)-du(indp)); -fu2(indn)./(-dx(indn)-du(indn))]); % backtracking line search suffdec = 0; backiter = 0; while (~suffdec) xp = x + s*dx; up = u + s*du; vp = v + s*dv; Atvp = Atv + s*Atdv; lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; fu1p = xp - up; fu2p = -xp - up; rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)]; rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau); rpp = rpri + s*Adx; suffdec = (norm([rdp; rcp; rpp]) 32) disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)') xp = x; return end end % next iteration x = xp; u = up; v = vp; Atv = Atvp; lamu1 = lamu1p; lamu2 = lamu2p; fu1 = fu1p; fu2 = fu2p; % surrogate duality gap sdg = -(fu1'*lamu1 + fu2'*lamu2); tau = mu*2*N/sdg; rpri = rpp; rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; resnorm = norm([rdual; rcent; rpri]); done = (sdg < pdtol) | (pditer >= pdmaxiter); disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e, Primal res = %8.3e',... pditer, tau, sum(u), sdg, norm(rdual), norm(rpri))); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end