当前位置:首页 > 芯闻号 > 充电吧
[导读]摘要:选自StanfordMLGroup作者:PranavRajpurkar等机器之心编译参与:李泽南机器学习在医疗领域的应用一直是AI的重要发展方向,深度学习著名学者吴恩达和他在斯坦福大学的团队一直

摘要:选自StanfordMLGroup作者:PranavRajpurkar等机器之心编译参与:李泽南机器学习在医疗领域的应用一直是AI的重要发展方向,深度学习著名学者吴恩达和他在斯坦福大学的团队一直在这一



选自Stanford ML Group

作者:Pranav Rajpurkar等

机器之心编译

参与:李泽南



机器学习在医疗领域的应用一直是 AI 的重要发展方向,深度学习著名学者吴恩达和他在斯坦福大学的团队一直在这一方面做着努力。近日,该团队提交的一篇新论文提出了名为 CheXNet 的新技术。研究人员在论文中表示:新的技术已经在识别胸透照片中肺炎等疾病上的准确率上超越了人类专业医师。吴恩达表示,或许放射科医生们需要开始担心他们的工作了。





仅在美国,每年就有超过 100 万成年人因为肺炎住院,5 万人因为该病而死亡(CDC, 2017)。目前,胸部 X 光检查是诊断肺炎的最佳方法(WHO, 2001),这种方法在临床护理和流行病学研究中发挥着重要作用。然而,通过 X 光片诊断肺炎是一个具有挑战性的任务,需要放射科医师专家级的判断能力。在斯坦福大学发表的新论文中,计算机科学院和医学院的研究人员共同提出了一种新的机器学习模型,可以让计算机通过胸透照片自动诊断肺炎,其诊断准确率超过了放射科医师。



图 1. ChexNet 是一个 121 层的卷积神经网络,以胸透图片为输入,输出患病概率。在这个例子中,CheXnet 准确地探测到了肺炎,同时定位了图片中最有可能患病的位置。



CheXNet 可以输出肺炎存在可能性的热区图。研究人员在最近发布的 ChestX-ray14 数据集(Wang et al., 2017)上训练了 CheXNet。该数据集包含 112,120 张各自标注最多有 14 种不同胸部疾病(包括肺炎)的正面胸透图像。研究人员使用密集连接(Huang et al., 2016)与批归一化(Ioffe & Szegedy, 2015)来优化这一深度神经网络。



图 2. CheXNet 在使用胸透图像识别肺炎任务上的表现要超过放射科医师的平均水平。在测试中,CheXNet 与四名人类放射科医师在敏感度(衡量正确识别阳性的能力)以及特异性(衡量正确识别阴性的能力)上进行比较。放射科医生的个人表现以橙色点标记,平均值以绿色点标记。CheXNet 输出从胸透照片上检测出的患肺炎概率,蓝色曲线是分类阈值形成的。所有医师的敏感度-特异性点均低于蓝色曲线,这意味着 CheXNet 在肺炎上的诊断水平与放射科医师相同,甚至更高。



从胸部 X 光检查照片中检测肺炎对于放射科医师而言是一个困难的任务。因为肺炎在照片上的表现经常难以识别——它可能会与其他病症重叠,也可以与其他很多良性异常类似。这些原因导致放射科医师在诊断肺炎时表现差异很大(Neuman et al., 2012;Davies et al., 1996;Hopstaken et al., 2004)。为了评估放射科医师的表现,斯坦福大学的研究人员找来了四名专业放射科医师,使用 ChestX-ray14 子集的 420 张图片对他们进行了测试。在这 420 张图片里,诊断正确与否的标准为其他大多数放射科医生的投票结果,与此同时,CheXNet 模型也以同样的标准进行了测试。



研究人员发现,CheXNet 在敏感度与特异性两个方面均超过了放射科医师的平均水平。为了对比 CheXNet 与此前使用 ChestX-ray14 的模型的能力,研究人员横向对比了新模型与其他模型在 ChestX-ray14 上对于十四种疾病的诊断准确率,结果发现新模型的表现在所有方面均超过了前人的结果。以超过专业放射科医师的水平自动对胸透照片进行分析诊断疾病不仅在临床上可以为我们带来更多方便,也可以在医疗影像专业人士数量不足的情况下为病人带来帮助。



表 1. CheXNet 在 ChestX-ray14 数据集中 14 种病变的检测结果与另外两种模型的对比。在检测肿块、结节、肺炎、气胸和肺气肿时,CheXNet 的表现超越了此前业内最佳水平至少 0.05。



图 3. 使用 Class Activation Maps,ChexNet 定位了它识别出的病变,高亮区域是分析病症需要重点观察的位置。



论文:CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning






摘要: 我们开发了一种全新算法,能够从胸透照片里检测肺炎,且水平超越专业放射科医生。我们的算法被称为 CheXNet,它是一个 121 层的卷积神经网络。该网络在目前最大的开放式胸透照片数据集「ChestX-ray14」上进行训练。ChestX-ray14 数据集包含 14 种疾病的 10 万张前视图 X-ray 图像。在实验中,4 名专业的放射科学者在测试数据集上进行手动注释,并与 CheXNet 的表现进行对比。我们发现,在肺炎检测的敏感性与特异性上,CheXNet 的准确率超越了普通的放射科医生。我们把 CheXNet 应用到对 ChestX-ray14 数据集中 14 种疾病的检测上,也取得了顶尖的结果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭