何谓企业AI转型的1+N范式?第四范式推新一代SageOne软硬一体系统
扫描二维码
随时随地手机看文章
“科学规律的数量井喷,产业全面进入科学时代”,第四范式创始人兼CEO戴文渊道出了他的洞察。
1998年图领奖获得者Jim Gray于2005年提出《第四范式》,第四范式的典型特点是数据科学,计算机从海量数据中发现规律、形成理论诠释自然现象。此即第四范式公司的愿景与目标。
戴文渊提到,在第四范式时代,企业的评估指标发生了变化,从追逐资产负债率、增长率、净资产收益率等维度,改为追求创新速度,比如每天能找到多少个客户需求,每天能发现多少种降低成本的新方法,每天能找到多少个提升企业运营效率的新思路。
这不是仅仅靠增加人力就能实现的任务,商业智能的重要性在此凸显。
智能化转型1+N新范式
戴文渊提出了企业全面智能化转型新范式:1+N。1代表追求极致的业务效果,如何充分发挥数据的价值,如何从“事后分析”变为“实时决策”。N代表追求规模化落地效率,如何让一个Web开发人员也能开发AI应用,如何解决AI落地过程中的数据瓶颈。
在1+N之下,充沛且高效的算力是基础,第四范式不仅提供软件开发平台,还提供AI算力的硬件平台,
第四范式联合创始人兼首席架构师胡时伟回答了如上1+N的问题,第四范式认为,统一方法论+AutoML=快速构建AI应用,面向AI数据治理=规模化AI落地。
构建“闭环AI应用”的两大挑战,其一是数据的准备,传统的数据积累并不适配于AI应用,AI数据准备平均耗时达到14人月;其二是模型的开发,AI专业人才缺失+高难度复杂的模型开发上线过程,导致模型开发上线平均周期达到了16人月。
在AI数据治理中,第四范式能够提供数据采集访问双实时,全量原始数据,线上线下一致性和利用回流数据自动标注的功能
有了大规模AI应用,并不意味着万事大吉,很多时候算力都会成为阻碍。胡时伟提到,在追求核心场景的极致效果案例中,随着数据量扩大,机器数量是指数级上升而非线性;在追求规模化落地大量AI应用场景的案例中,随着机器数量和场景数量增长,整体TCO也是指数级增长。传统算力和AI应用负载之间存在天然的鸿沟。