按从小到大的顺序的第1500个丑数
扫描二维码
随时随地手机看文章
题目:我们把只包含因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含因子7。习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第1500个丑数。
分析:这是一道在网络上广为流传的面试题,据说google曾经采用过这道题。
算法一:所谓一个数m是另一个数n的因子,是指n能被m整除,也就是n % m == 0。根据丑数的定义,丑数只能被2、3和5整除。也就是说如果一个数如果它能被2整除,我们把它连续除以2;如果能被3整除,就连续除以3;如果能被5整除,就除以连续5。如果最后我们得到的是1,那么这个数就是丑数,否则不是。
#includeusing namespace std; int GetUglyNum1(int n) { int i, temp, time=0; for(i=1; ; i++) { temp=i; while(temp%2==0) temp/=2; while(temp%3==0) temp/=3; while(temp%5==0) temp/=5; if(temp==1) { time++; if(time==n) break; } } return i; } void main() { int n; cout<>n; cout<<GetUglyNum1(n)<<endl; }
该算法非常直观,代码也非常简洁,但最大的问题我们每个整数都需要计算。即使一个数字不是丑数,我们还是需要对它做求余数和除法操作。因此该算法很耗时。
接下来我们换一种思路来分析这个问题,试图只计算丑数,而不在非丑数的整数上花费时间。根据丑数的定义,丑数应该是另一个丑数乘以2、3或者5的结果(1除外)。因此我们可以创建一个数组,里面的数字是排好序的丑数。里面的每一个丑数是前面的丑数乘以2、3或者5得到的。
这种思路的关键在于怎样确保数组里面的丑数是排好序的。我们假设数组中已经有若干个丑数,排好序后存在数组中。我们把现有的最大丑数记做M。现在我们来生成下一个丑数,该丑数肯定是前面某一个丑数乘以2、3或者5的结果。我们首先考虑把已有的每个丑数乘以2。在乘以2的时候,能得到若干个结果小于或等于M的。由于我们是按照顺序生成的,小于或者等于M肯定已经在数组中了,我们不需再次考虑;我们还会得到若干个大于M的结果,但我们只需要第一个大于M的结果,因为我们希望丑数是按从小到大顺序生成的,其他更大的结果我们以后再说。我们把得到的第一个乘以2后大于M的结果,记为M2。同样我们把已有的每一个丑数乘以3和5,能得到第一个大于M的结果M3和M5。那么下一个丑数应该是M2、M3和M5三个数的最小者。
前面我们分析的时候,提到把已有的每个丑数分别都乘以2、3和5,事实上是不需要的,因为已有的丑数是按顺序存在数组中的。对乘以2而言,肯定存在某一个丑数T2,排在它之前的每一个丑数乘以2得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以2得到的结果都会太大。我们只需要记下这个丑数的位置,同时每次生成新的丑数的时候,去更新这个T2。对乘以3和5而言,存在着同样的T3和T5。
#includeusing namespace std; int Min(int num1, int num2, int num3) { int min=(num1<num2)?num1:num2; min=(min<num3)?min:num3; return min; } int GetUglyNum2(int n) { if(n<=0) return 0; int *pUgly=new int[n]; pUgly[0]=1; int nextUglyIndex=1; int *p2=pUgly; int *p3=pUgly; int *p5=pUgly; while(nextUglyIndex < n) { int min=Min(*p2*2, *p3*3, *p5*5); pUgly[nextUglyIndex]=min; while(*p2*2<=min) p2++; while(*p3*3<=min) p3++; while(*p5*5<=min) p5++; nextUglyIndex++; } int ugly=pUgly[n-1]; delete[] pUgly; return ugly; } void main() { int n; cout<>n; cout<<GetUglyNum2(n)<<endl; }
第一种思路相比,这种算法不需要在非丑数的整数上做任何计算,因此时间复杂度要低很多。当然我们也要指出,第二种算法由于要保存已经生成的丑数,因此需要一个数组,从而需要额外的内存。第一种算法是没有这样的内存开销的。