当前位置:首页 > 芯闻号 > 充电吧
[导读]Paxos算法是莱斯利·兰伯特(英语:Leslie Lamport,LaTeX中的「La」)于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。Paxos算法一开始非常难以理解,但是一旦

Paxos算法是莱斯利·兰伯特(英语:Leslie Lamport,LaTeX中的「La」)于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。

Paxos算法一开始非常难以理解,但是一旦理解其实也并不难,之所以难理解其实是因为作者讲的故事难理解。

Paxos算法维基百科https://en.wikipedia.org/wiki/Paxos_(computer_science)

网上有2篇帖子是讲的非常好的,

分别是:以两军问题为背景来演绎Basic Paxos和Paxos算法细节详解(一)--通过现实世界描述算法

本人是在看了这2个帖子之后再结合原论文才看懂的。


Paxos一共4个角色:Client   Proposer      Acceptor     Learner。

Client:产生议题者
Proposer :提议者
Acceptor:决策者
Learner:最终决策学习者,也就是执行者。


Proposer拿着Client的议题去向Acceptor提议,让Acceptor来决策。
Proposer提出议题,Acceptor初步接受或者Acceptor初步不接受。
Acceptor初步接受则Proposer再次向Acceptor确认是否最终接受。
Acceptor最终接受或者Acceptor最终不接受。

Learner最终学习的目标是向所有Acceptor学习,如果有多数派个Acceptor最终接受了某提议,那就得到了最终的结果,算法的目的就达到了。


最基本的Message flow: Basic Paxos演示图如下图所示,其他情况可以参考百科。



图解:

A1,,A2和A3就是Acceptor。

P1,p2和p3就是Proposer。浅色的P1和P2说明是进行提议,深色的P1和P2说明是拿到表决。

圆圈123表明是每次提议序号,递增即可。黑色的图表示被黑了,也就是否决。方块表示投票结果,绿方块表示投票通过,红色菱形表示最终的投票结果。

整个事件是按照时间线从左到右发展。


事件发展:

第一个框代表第一阶段--提议

1.p2最先找到A2,P2提议序号是2,A2记录下,因为之前没有其他的序号所以成功了,然后返回标志给p2;

2.p1找到A1,P1提议序号是1,A1记录下,因为之前没有其他的序号所以成功了,然后返回标志给p1;

3.p1找到A3,P1提议序号是1,A3记录下,因为之前没有其他的序号所以成功了,然后返回标志给p1;

问题来了

4.p1找到A2,P1提议序号是1,A2已经记录下提议序号2,2>1,所以不成功;


5.p2找到A1,P2提议序号是2,A1已经记录下提议序号1,1>2,所以成功;,然后返回标志给p2;

6.p2找到A3,P2提议序号是2,A3已经记录下提议序号1,1>2,所以成功;,然后返回标志给p2;


第二个框代表第二阶段--确认提议(投票)


7.p1找到A1,P1确认序号是1,A1已经记录下提议序号2,1<2,所以不确认,然后p1继续提议序号是3,周而复始...;

8.p2找到A2,P2确认序号是2,A2已经记录下提议序号2,2=2,所以确认成功;,然后返回投票标志给p2;

9.p2找到A3,P2确认序号是2,A3已经记录下提议序号2,2=2,所以确认成功;,然后返回投票标志给p2;

10.p2找到A1,P2确认序号是2,A1已经记录下提议序号3,2<3,所以不确认,;然后p2继续提议序号是4,周而复始...;
问题来了


11.p1找到A2,P1确认序号是1,A1已经记录下确认序号2,1<2,所以不确认,然后返回确认序号2;

12.p1找到A3,P1确认序号是1,A3已经记录下确认序号2,1<2,所以不确认,然后返回确认序号2;

13.p1和p2都得到确认也就是投票结果是2。

14.所有的Learner最终学习的目标是2。


Paxos过程结束了,这样,一致性得到了保证,算法运行到最后所有的proposer都投“2”所有的acceptor都接受这个议题,也就是说在最初的第二阶段,议题是先入为主的,谁先占了先机,后面的proposer在第一阶段就会学习到这个议题而修改自己本身的议题,才能让一致性得到保证,这就是paxos算法的一个过程。该算法就是为了追求结果的一致性。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭