【百度面试题】把数组排成最小的数
扫描二维码
随时随地手机看文章
思路:先将整数数组转为字符串数组,然后字符串数组进行排序,最后依次输出字符串数组即可。这里注意的是字符串的比较函数需要重新定义,不是比较a和b,而是比较ab与 ba。如果ab < ba,则a < b;如果ab > ba,则a > b;如果ab = ba,则a = b。比较函数的定义是本解决方案的关键。这道题其实就是希望我们能找到一个排序规则,根据这个规则排出来的数组能排成一个最小的数字。
证明:为什么这样排个序就可以了呢?简单证明一下。根据算法,如果a < b,那么a排在b前面,否则b排在a前面。可利用反证法,假设排成的最小数字为xxxxxx,并且至少存在一对字符串满足这个关系:a > b,但是在组成的数字中a排在b前面。根据a和b出现的位置,分三种情况考虑:
(1)xxxxab,用ba代替ab可以得到xxxxba,这个数字是小于xxxxab,与假设矛盾。因此排成的最小数字中,不存在上述假设的关系。
(2)abxxxx,用ba代替ab可以得到baxxxx,这个数字是小于abxxxx,与假设矛盾。因此排成的最小数字中,不存在上述假设的关系。
(3)axxxxb,这一步证明麻烦了一点。可以将中间部分看成一个整体ayb,则有ay < ya,yb < by成立。将ay和by表示成10进制数字形式,则有下述关系式,这里a,y,b的位数分别为n,m,k。
关系1: ay < ya => a * 10^m + y < y * 10^n + a => a * 10^m - a < y * 10^n - y => a( 10^m - 1)/( 10^n - 1) < y
关系2: yb < by => y * 10^k + b < b * 10^m + y => y * 10^k - y < b * 10^m - b => y < b( 10^m -1)/( 10^k -1)
关系3: a( 10^m - 1)/( 10^n - 1) < y < b( 10^m -1)/( 10^k -1) => a/( 10^n - 1)< b/( 10^k -1) => a*10^k - a < b * 10^n - b =>a*10^k + b < b * 10^n + a => a < b
这与假设a > b矛盾。因此排成的最小数字中,不存在上述假设的关系。
综上所述,得出假设不成立,从而得出结论:对于排成的最小数字,不存在满足下述关系的一对字符串:a > b,但是在组成的数字中a出现在b的前面。从而得出算法是正确的。
代码一:利用指针。
#include
#include
using namespace std;
const int g_MaxNumberLength=10;
char* g_StrCombine1=new char[g_MaxNumberLength*2+1];
char* g_StrCombine2=new char[g_MaxNumberLength*2+1];
int compare(const void* strNumber1, const void* strNumber2)
{
strcpy(g_StrCombine1, *(const char**)strNumber1);
strcat(g_StrCombine1, *(const char**)strNumber2);
strcpy(g_StrCombine2, *(const char**)strNumber2);
strcat(g_StrCombine2, *(const char**)strNumber1);
return strcmp(g_StrCombine1, g_StrCombine2);
}
void PrintMinNumber(int *numbers, int length)
{
if(numbers==NULL || length<=0)
return;
char** strNumbers=(char**)(new int[length]);
for(int i=0; i>Num;
int *numbers=new int[Num];
for(int i=0; i>numbers[i];
PrintMinNumber(numbers, Num);
}
代码二:利用string类。
#include
#include
#include
#include
using namespace std;
bool compare(const string& str1, const string &str2)
{
string s1=str1+str2;
string s2=str2+str1;
return s1>pStrArray[i];
}
sort(pStrArray, pStrArray+num, compare);
for(i=0; i>Num;
int *pArray=new int[Num];
for(int i=0; i>pArray[i];
ComArrayMin(pArray, Num);
}
感谢:http://blog.csdn.net/wuzhekai1985/article/details/6704902
http://blog.csdn.net/xianliti/article/details/5649876