Java编程中涉及到的各种集合类
扫描二维码
随时随地手机看文章
本文主要关注Java编程中涉及到的各种集合类,以及它们的使用场景
1. Java集合类基本概念
在编程中,常常需要集中存放多个数据。从传统意义上讲,数组是我们的一个很好的选择,前提是我们事先已经明确知道我们将要保存的对象的数量。一旦在数组初始化时指定了这个数组长度,这个数组长度就是不可变的,如果我们需要保存一个可以动态增长的数据(在编译时无法确定具体的数量),java的集合类就是一个很好的设计方案了。
集合类主要负责保存、盛装其他数据,因此集合类也被称为容器类。所以的集合类都位于java.util包下,后来为了处理多线程环境下的并发安全问题,java5还在java.util.concurrent包下提供了一些多线程支持的集合类。
在学习Java中的集合类的API、编程原理的时候,我们一定要明白,"集合"是一个很古老的数学概念,它远远早于Java的出现。从数学概念的角度来理解集合能帮助我们更好的理解编程中什么时候该使用什么类型的集合类。
Java容器类类库的用途是"保存对象",并将其划分为两个不同的概念:
1) Collection 一组"对立"的元素,通常这些元素都服从某种规则 1.1) List必须保持元素特定的顺序 1.2) Set不能有重复元素 1.3) Queue保持一个队列(先进先出)的顺序 2) Map 一组成对的"键值对"对象
Collection和Map的区别在于容器中每个位置保存的元素个数:
1) Collection 每个位置只能保存一个元素(对象) 2) Map保存的是"键值对",就像一个小型数据库。我们可以通过"键"找到该键对应的"值"
2. Java集合类架构层次关系
1. Interface Iterable 迭代器接口,这是Collection类的父接口。实现这个Iterable接口的对象允许使用foreach进行遍历,也就是说,所有的Collection集合对象都具有"foreach可遍历性"。这个Iterable接口只 有一个方法: iterator()。它返回一个代表当前集合对象的泛型
3. Java集合类的应用场景代码
学习了集合类的基本架构框架之后,我们接着来学习它们各自的应用场景、以及细节处的注意事项
0x1: Set
HashSet
import java.util.*; //类A的equals方法总是返回true,但没有重写其hashCode()方法。不能保证当前对象是HashSet中的唯一对象 class A { public boolean equals(Object obj) { return true; } } //类B的hashCode()方法总是返回1,但没有重写其equals()方法。不能保证当前对象是HashSet中的唯一对象 class B { public int hashCode() { return 1; } } //类C的hashCode()方法总是返回2,且有重写其equals()方法 class C { public int hashCode() { return 2; } public boolean equals(Object obj) { return true; } } public class HashSetTest { public static void main(String[] args) { HashSet books = new HashSet(); //分别向books集合中添加两个A对象,两个B对象,两个C对象 books.add(new A()); books.add(new A()); books.add(new B()); books.add(new B()); books.add(new C()); books.add(new C()); System.out.println(books); } }
result:
[B@1, B@1, C@2, A@3bc257, A@785d65]
可以看到,如果两个对象通过equals()方法比较返回true,但这两个对象的hashCode()方法返回不同的hashCode值时,这将导致HashSet会把这两个对象保存在Hash表的不同位置,从而使对象可以添加成功,这就与Set集合的规则有些出入了。所以,我们要明确的是: equals()决定是否可以加入HashSet、而hashCode()决定存放的位置,它们两者必须同时满足才能允许一个新元素加入HashSet
但是要注意的是: 如果两个对象的hashCode相同,但是它们的equlas返回值不同,HashSet会在这个位置用链式结构来保存多个对象。而HashSet访问集合元素时也是根据元素的HashCode值来快速定位的,这种链式结构会导致性能下降。
所以如果需要把某个类的对象保存到HashSet集合中,我们在重写这个类的equlas()方法和hashCode()方法时,应该尽量保证两个对象通过equals()方法比较返回true时,它们的hashCode()方法返回值也相等
LinkedHashSet
import java.util.*; public class LinkedHashSetTest { public static void main(String[] args) { LinkedHashSet books = new LinkedHashSet(); books.add("Java"); books.add("LittleHann"); System.out.println(books); //删除 Java books.remove("Java"); //重新添加 Java books.add("Java"); System.out.println(books); } }
元素的顺序总是与添加顺序一致,同时要明白的是,LinkedHashSetTest是HashSet的子类,因此它不允许集合元素重复
TreeSet
import java.util.*; public class TreeSetTest { public static void main(String[] args) { TreeSet nums = new TreeSet(); //向TreeSet中添加四个Integer对象 nums.add(5); nums.add(2); nums.add(10); nums.add(-9); //输出集合元素,看到集合元素已经处于排序状态 System.out.println(nums); //输出集合里的第一个元素 System.out.println(nums.first()); //输出集合里的最后一个元素 System.out.println(nums.last()); //返回小于4的子集,不包含4 System.out.println(nums.headSet(4)); //返回大于5的子集,如果Set中包含5,子集中还包含5 System.out.println(nums.tailSet(5)); //返回大于等于-3,小于4的子集。 System.out.println(nums.subSet(-3 , 4)); } }
与HashSet集合采用hash算法来决定元素的存储位置不同,TreeSet采用红黑树的数据结构来存储集合元素。TreeSet支持两种排序方式: 自然排序、定制排序
1. 自然排序:
TreeSet会调用集合元素的compareTo(Object obj)方法来比较元素之间的大小关系,然后将集合元素按升序排序,即自然排序。如果试图把一个对象添加到TreeSet时,则该对象的类必须实现Comparable接口,否则程序会抛出异常。
当把一个对象加入TreeSet集合中时,TreeSet会调用该对象的compareTo(Object obj)方法与容器中的其他对象比较大小,然后根据红黑树结构找到它的存储位置。如果两个对象通过compareTo(Object obj)方法比较相等,新对象将无法添加到TreeSet集合中(牢记Set是不允许重复的概念)。
注意: 当需要把一个对象放入TreeSet中,重写该对象对应类的equals()方法时,应该保证该方法与compareTo(Object obj)方法有一致的结果,即如果两个对象通过equals()方法比较返回true时,这两个对象通过compareTo(Object obj)方法比较结果应该也为0(即相等)
看到这里,我们应该明白:
1) 对与Set来说,它定义了equals()为唯一性判断的标准,而对于到了具体的实现,HashSet、TreeSet来说,它们又会有自己特有的唯一性判断标准,只有同时满足了才能判定为唯一性 2) 我们在操作这些集合类的时候,对和唯一性判断有关的函数重写要重点关注
2. 定制排序
TreeSet的自然排序是根据集合元素的大小,TreeSet将它们以升序排序。如果我们需要实现定制排序,则可以通过Comparator接口的帮助(类似PHP中的array_map回调处理函数的思想)。该接口里包含一个int compare(T o1, T o2)方法,该方法用于比较大小
import java.util.*; class M { int age; public M(int age) { this.age = age; } public String toString() { return "M[age:" + age + "]"; } } public class TreeSetTest4 { public static void main(String[] args) { TreeSet ts = new TreeSet(new Comparator() { //根据M对象的age属性来决定大小 public int compare(Object o1, Object o2) { M m1 = (M)o1; M m2 = (M)o2; return m1.age > m2.age ? -1 : m1.age < m2.age ? 1 : 0; } }); ts.add(new M(5)); ts.add(new M(-3)); ts.add(new M(9)); System.out.println(ts); } }
看到这里,我们需要梳理一下关于排序的概念
1) equals、compareTo决定的是怎么比的问题,即用什么field进行大小比较 2) 自然排序、定制排序、Comparator决定的是谁大的问题,即按什么顺序(升序、降序)进行排序 它们的关注点是不同的,一定要注意区分
EnumSet
import java.util.*; enum Season { SPRING,SUMMER,FALL,WINTER } public class EnumSetTest { public static void main(String[] args) { //创建一个EnumSet集合,集合元素就是Season枚举类的全部枚举值 EnumSet es1 = EnumSet.allOf(Season.class); //输出[SPRING,SUMMER,FALL,WINTER] System.out.println(es1); //创建一个EnumSet空集合,指定其集合元素是Season类的枚举值。 EnumSet es2 = EnumSet.noneOf(Season.class); //输出[] System.out.println(es2); //手动添加两个元素 es2.add(Season.WINTER); es2.add(Season.SPRING); //输出[SPRING,WINTER] System.out.println(es2); //以指定枚举值创建EnumSet集合 EnumSet es3 = EnumSet.of(Season.SUMMER , Season.WINTER); //输出[SUMMER,WINTER] System.out.println(es3); EnumSet es4 = EnumSet.range(Season.SUMMER , Season.WINTER); //输出[SUMMER,FALL,WINTER] System.out.println(es4); //新创建的EnumSet集合的元素和es4集合的元素有相同类型, //es5的集合元素 + es4集合元素 = Season枚举类的全部枚举值 EnumSet es5 = EnumSet.complementOf(es4); //输出[SPRING] System.out.println(es5); } }
以上就是Set集合类的编程应用场景。那么应该怎样选择何时使用这些集合类呢?
1) HashSet的性能总是比TreeSet好(特别是最常用的添加、查询元素等操作),因为TreeSet需要额外的红黑树算法来维护集合元素的次序。只有当需要一个保持排序的Set时,才应该使用TreeSet,否则都应该使用HashSet 2) 对于普通的插入、删除操作,LinkedHashSet比HashSet要略慢一点,这是由维护链表所带来的开销造成的。不过,因为有了链表的存在,遍历LinkedHashSet会更快 3) EnumSet是所有Set实现类中性能最好的,但它只能保存同一个枚举类的枚举值作为集合元素 4) HashSet、TreeSet、EnumSet都是"线程不安全"的,通常可以通过Collections工具类的synchronizedSortedSet方法来"包装"该Set集合。 SortedSet s = Collections.synchronizedSortedSet(new TreeSet(...));
0x2: List
ArrayList
如果一开始就知道ArrayList集合需要保存多少元素,则可以在创建它们时就指定initialCapacity大小,这样可以减少重新分配的次数,提供性能,ArrayList还提供了如下方法来重新分配Object[]数组
1) ensureCapacity(int minCapacity): 将ArrayList集合的Object[]数组长度增加minCapacity 2) trimToSize(): 调整ArrayList集合的Object[]数组长度为当前元素的个数。程序可以通过此方法来减少ArrayList集合对象占用的内存空间
import java.util.*; public class ListTest { public static void main(String[] args) { List books = new ArrayList(); //向books集合中添加三个元素 books.add(new String("轻量级Java EE企业应用实战")); books.add(new String("疯狂Java讲义")); books.add(new String("疯狂Android讲义")); System.out.println(books); //将新字符串对象插入在第二个位置 books.add(1 , new String("疯狂Ajax讲义")); for (int i = 0 ; i < books.size() ; i++ ) { System.out.println(books.get(i)); } //删除第三个元素 books.remove(2); System.out.println(books); //判断指定元素在List集合中位置:输出1,表明位于第二位 System.out.println(books.indexOf(new String("疯狂Ajax讲义"))); //① //将第二个元素替换成新的字符串对象 books.set(1, new String("LittleHann")); System.out.println(books); //将books集合的第二个元素(包括) //到第三个元素(不包括)截取成子集合 System.out.println(books.subList(1 , 2)); }
Stack
注意Stack的后进先出的特点
import java.util.*; public class VectorTest { public static void main(String[] args) { Stack v = new Stack(); //依次将三个元素push入"栈" v.push("疯狂Java讲义"); v.push("轻量级Java EE企业应用实战"); v.push("疯狂Android讲义"); //输出:[疯狂Java讲义, 轻量级Java EE企业应用实战 , 疯狂Android讲义] System.out.println(v); //访问第一个元素,但并不将其pop出"栈",输出:疯狂Android讲义 System.out.println(v.peek()); //依然输出:[疯狂Java讲义, 轻量级Java EE企业应用实战 , 疯狂Android讲义] System.out.println(v); //pop出第一个元素,输出:疯狂Android讲义 System.out.println(v.pop()); //输出:[疯狂Java讲义, 轻量级Java EE企业应用实战] System.out.println(v); } }
LinkedList
import java.util.*; public class LinkedListTest { public static void main(String[] args) { LinkedList books = new LinkedList(); //将字符串元素加入队列的尾部(双端队列) books.offer("疯狂Java讲义"); //将一个字符串元素加入栈的顶部(双端队列) books.push("轻量级Java EE企业应用实战"); //将字符串元素添加到队列的头(相当于栈的顶部) books.offerFirst("疯狂Android讲义"); for (int i = 0; i < books.size() ; i++ ) { System.out.println(books.get(i)); } //访问、并不删除栈顶的元素 System.out.println(books.peekFirst()); //访问、并不删除队列的最后一个元素 System.out.println(books.peekLast()); //将栈顶的元素弹出"栈" System.out.println(books.pop()); //下面输出将看到队列中第一个元素被删除 System.out.println(books); //访问、并删除队列的最后一个元素 System.out.println(books.pollLast()); //下面输出将看到队列中只剩下中间一个元素: //轻量级Java EE企业应用实战 System.out.println(books); } }
从代码中我们可以看到,LinkedList同时表现出了双端队列、栈的用法。功能非常强大
0x3: Queue
PriorityQueue
import java.util.*; public class PriorityQueueTest { public static void main(String[] args) { PriorityQueue pq = new PriorityQueue(); //下面代码依次向pq中加入四个元素 pq.offer(6); pq.offer(-3); pq.offer(9); pq.offer(0); //输出pq队列,并不是按元素的加入顺序排列, //而是按元素的大小顺序排列,输出[-3, 0, 9, 6] System.out.println(pq); //访问队列第一个元素,其实就是队列中最小的元素:-3 System.out.println(pq.poll()); } }
PriorityQueue不允许插入null元素,它还需要对队列元素进行排序,PriorityQueue的元素有两种排序方式
1) 自然排序: 采用自然顺序的PriorityQueue集合中的元素对象都必须实现了Comparable接口,而且应该是同一个类的多个实例,否则可能导致ClassCastException异常 2) 定制排序 创建PriorityQueue队列时,传入一个Comparator对象,该对象负责对队列中的所有元素进行排序 关于自然排序、定制排序的原理和之前说的TreeSet类似
ArrayDeque
import java.util.*; public class ArrayDequeTest { public static void main(String[] args) { ArrayDeque stack = new ArrayDeque(); //依次将三个元素push入"栈" stack.push("疯狂Java讲义"); stack.push("轻量级Java EE企业应用实战"); stack.push("疯狂Android讲义"); //输出:[疯狂Java讲义, 轻量级Java EE企业应用实战 , 疯狂Android讲义] System.out.println(stack); //访问第一个元素,但并不将其pop出"栈",输出:疯狂Android讲义 System.out.println(stack.peek()); //依然输出:[疯狂Java讲义, 轻量级Java EE企业应用实战 , 疯狂Android讲义] System.out.println(stack); //pop出第一个元素,输出:疯狂Android讲义 System.out.println(stack.pop()); //输出:[疯狂Java讲义, 轻量级Java EE企业应用实战] System.out.println(stack); } }
以上就是List集合类的编程应用场景。我们来梳理一下思路
1. java提供的List就是一个"线性表接口",ArrayList(基于数组的线性表)、LinkedList(基于链的线性表)是线性表的两种典型实现 2. Queue代表了队列,Deque代表了双端队列(既可以作为队列使用、也可以作为栈使用) 3. 因为数组以一块连续内存来保存所有的数组元素,所以数组在随机访问时性能最好。所以的内部以数组作为底层实现的集合在随机访问时性能最好。 4. 内部以链表作为底层实现的集合在执行插入、删除操作时有很好的性能 5. 进行迭代操作时,以链表作为底层实现的集合比以数组作为底层实现的集合性能好
我们之前说过,Collection接口继承了Iterable接口,也就是说,我们以上学习到的所有的Collection集合类都具有"可遍历性"
Iterable接口也是java集合框架的成员,它隐藏了各种Collection实现类的底层细节,向应用程序提供了遍历Collection集合元素的统一编程接口:
1) boolean hasNext(): 是否还有下一个未遍历过的元素 2) Object next(): 返回集合里的下一个元素 3) void remove(): 删除集合里上一次next方法返回的元素
iterator实现遍历:
import java.util.*; public class IteratorTest { public static void main(String[] args) { //创建一个集合 Collection books = new HashSet(); books.add("轻量级Java EE企业应用实战"); books.add("疯狂Java讲义"); books.add("疯狂Android讲义"); //获取books集合对应的迭代器 Iterator it = books.iterator(); while(it.hasNext()) { //it.next()方法返回的数据类型是Object类型, //需要强制类型转换 String book = (String)it.next(); System.out.println(book); if (book.equals("疯狂Java讲义")) { //从集合中删除上一次next方法返回的元素 it.remove(); } //对book变量赋值,不会改变集合元素本身 book = "测试字符串"; } System.out.println(books); } }
<p style="margin:10px auto;padding-top