字符设备驱动-同步互斥阻塞
扫描二维码
随时随地手机看文章
我们想来达到一个目的:同一时刻,只能有一个应用程序打开/dev/buttons
一般的,我们想达到目的会想到下面这种方法:
static int canopen = 1; static int sixth_drv_open(struct inode *inode,struct file *file) { if(--canopen != 0) { canopen++; return -EBUSY; } } static int sixth_drv_close (struct inode *inode, struct file *file) { canopen++; }
假设程序A来调用,那么进入open函数,canopen = 0,if条件不成立;如果A没有释放,程序B来调用时候,canopen = -1,if条件成立,return -EBUSY;
原则上是可以实现,但是我们进行–canopen操作实际上转化程汇编使用三条指令(读->改->写)执行的,由于Linux是多任务编程的。当我们程序A进行–canopen的读取后,程序B刚好进行那么就有可能发生程序AB都能调用驱动!看下图分析:
下面来介绍三种解决上面bug的方法 一、原子操作:
原子操作指的是在执行过程中不会被别的代码路径所中断的操作。
常用原子操作函数举例:atomic_t v = ATOMIC_INIT(0); //定义原子变量v并初始化为0 atomic_read(atomic_t *v); //返回原子变量的值 void atomic_inc(atomic_t *v); //原子变量增加1 void atomic_dec(atomic_t *v); //原子变量减少1 int atomic_dec_and_test(atomic_t *v); //自减操作后测试其是否为0,为0则返回true,否则返回false。
Makefile
KERN_DIR = /work/system/linux-2.6.22.6 all: make -C $(KERN_DIR) M=`pwd` modules clean: make -C $(KERN_DIR) M=`pwd` modules clean rm -rf modules.order obj-m += sixth_drv.o
驱动函数:sixth_drv.c
#include#include#include#include#include#include#include#include#include#include#include#includestatic struct fasync_struct *button_async; static struct class *sixthdrv_class; static struct class_device *sixthdrv_class_dev; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,s3c24xx_sixth_read将它清0 */ static volatile int ev_press = 0; volatile unsigned long *gpfcon; volatile unsigned long *gpfdat; volatile unsigned long *gpgcon; volatile unsigned long *gpgdat; struct pin_desc{ unsigned int pin; unsigned int key_val; }; /* 键值: 按下时,0x01、0x02、0x03 */ /* 键值: 松开时,0x81、0x82、0x83 */ static unsigned char key_val; struct pin_desc pin_desc[3] = { {S3C2410_GPF0,0X01}, {S3C2410_GPF2,0X02}, {S3C2410_GPG3,0X03}, }; atomic_t canopen = ATOMIC_INIT(1);//定义原子变量canopen并初始化为1 static irqreturn_t buttons_irq(int irq, void *dev_id) { struct pin_desc *pindesc = (struct pin_desc *)dev_id; unsigned int pinval; pinval = s3c2410_gpio_getpin(pindesc->pin); if(pinval) { /* 松开 */ key_val = 0x80 | (pindesc->key_val); *gpfdat |= ((1<<4) | (1<<5) | (1<key_val; *gpfdat &= ~((1<<4) | (1<<5) | (1<<6)); } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ kill_fasync (&button_async, SIGIO, POLL_IN); return IRQ_RETVAL(IRQ_HANDLED); } static int sixth_drv_open(struct inode *inode,struct file *file) { if(!atomic_dec_and_test(&canopen)) { atomic_inc(&canopen); return -EBUSY; } /* 配置GPF0,2、GPG3为中断引脚 */ request_irq(IRQ_EINT0, buttons_irq,IRQT_BOTHEDGE,"s2",&pin_desc[0]); request_irq(IRQ_EINT2, buttons_irq,IRQT_BOTHEDGE,"s3",&pin_desc[1]); request_irq(IRQ_EINT11,buttons_irq,IRQT_BOTHEDGE,"s4",&pin_desc[2]); /* 配置GPF4、5、6为输入引脚 */ *gpfcon &= ~((0x3<<4*2) | (0x3<<5*2) | (0x3<<6*2)); *gpfcon |= ((1<<4*2) | (1<<5*2) | (1<<6*2)); return 0; } static ssize_t sixth_drv_read (struct file *file, char __user *buf, size_t count, loff_t *ppos) { //看用户需要读取的空间,和这里的是否相同 if(count != 1) return -EINVAL; /* 如果无按键动作发生,则进行休眠状态 */ /* 如果ev_press等于0,休眠 */ wait_event_interruptible(button_waitq,ev_press); /* 如果有按键动作发生,则返回按键的值 */ copy_to_user(buf,&key_val,1); ev_press = 0; return 1; } static int sixth_drv_close (struct inode *inode, struct file *file) { atomic_inc(&canopen); free_irq(IRQ_EINT0, &pin_desc[0]); free_irq(IRQ_EINT2, &pin_desc[1]); free_irq(IRQ_EINT11, &pin_desc[2]); return 0; } static unsigned int sixth_drv_poll(struct file *file, struct poll_table_struct *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } static int sixth_drv_fasync (int fd, struct file *filp, int on) { printk("driver: sixth_drv_fasyncn"); return fasync_helper (fd, filp, on, &button_async); } static struct file_operations sixth_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = sixth_drv_open, .read = sixth_drv_read, .release = sixth_drv_close, .poll = sixth_drv_poll, .fasync = sixth_drv_fasync, }; int major; static int sixth_drv_init(void) { major = register_chrdev(0,"sixth_drv",&sixth_drv_fops); sixthdrv_class = class_create(THIS_MODULE,"sixthdrv"); sixthdrv_class_dev = class_device_create(sixthdrv_class,NULL,MKDEV(major,0),NULL,"buttons"); gpfcon = (volatile unsigned long *)ioremap(0x56000050,16); gpfdat = gpfcon + 1; gpgcon = (volatile unsigned long *)ioremap(0x56000060,16); gpgdat = gpgcon + 1; return 0; } static int sixth_drv_exit(void) { unregister_chrdev(major,"sixth_drv"); class_device_unregister(sixthdrv_class_dev); class_destroy(sixthdrv_class); iounmap(gpfcon); iounmap(gpgcon); return 0; } module_init(sixth_drv_init); module_exit(sixth_drv_exit); MODULE_LICENSE("GPL");
驱动测试函数:sixthdrvtest.c
#include#include#include#include#include#include#include#include/* * sixthdrvtest */ int fd; void czg_signal_handler(int signum) { unsigned char key_val = 0; read(fd,&key_val,1); printf("key_val: 0x%xn",key_val); } int main(int argc, char **argv) { int ret; int oflags; signal(SIGIO,czg_signal_handler); fd = open("/dev/buttons",O_RDWR); if(fd < 0) { printf("can't open!n"); return -1; } fcntl(fd,F_SETOWN,getpid()); // 告诉内核,发给谁 oflags = fcntl(fd,F_GETFL); fcntl(fd,F_SETFL,oflags | FASYNC); // 改变fasync标记, //最终会调用到驱动的faync > fasync_helper:初始化/释放fasync_struct //然后当按键按下时候,在irqreturn_t buttons_irq中断处理中调用kill_fasync while(1) { sleep(1000); } return 0; }
测试:
make arm-linux-gcc -o sixthdrvtest sixthdrvtest.c cp sixthdrvtest sixth_drv.ko /work/nfs_root/czg insmod sixth_drv.ko ./sixthdrvtest &
二、信号量:
信号量(semaphore)是用于保护临界区的一种常用方法,只有得到信号量的进程才能执行临界区代码。当获取不到信号量时,进程进入休眠等待状态。
//定义信号量 struct semaphore sem; //初始化信号量 void sema_init (struct semaphore *sem, int val); void init_MUTEX(struct semaphore *sem);//初始化为0 static DECLARE_MUTEX(button_lock); //定义互斥锁 //获得信号量 void down(struct semaphore * sem); int down_interruptible(struct semaphore * sem); int down_trylock(struct semaphore * sem); //释放信号量 void up(struct semaphore * sem);
代码只需要在上面的驱动程序sixth_drv.c稍做修改
static DECLARE_MUTEX(button_lock); //定义互斥锁 /* 获 取 信 号 量 */ down(&button_lock); /* 释放信号量 */ up(&button_lock);
三、阻塞: 阻塞操作:
是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后再进行操作。被挂起的进程进入休眠状态,被从调度器的运行队列移走,直到等待的条件被满足。
非阻塞操作:
进程在不能进行设备操作时并不挂起,它或者放弃,或者不停地查询,直至可以进行操作为止。
代码在上面的驱动程序sixth_drv.c稍做修改
static int sixth_drv_open(struct inode *inode,struct file *file) { if (file->f_flags & O_NONBLOCK) { if (down_trylock(&button_lock)) return -EBUSY; } else { /* 获 取 信 号 量 */ down(&button_lock); } } /*************************************************/ static ssize_t sixth_drv_read (struct file *file, char __user *buf, size_t count, loff_t *ppos) { //看用户需要读取的空间,和这里的是否相同 if(count != 1) return -EINVAL; if(file->f_flags & O_NONBLOCK) { if(!ev_press) return -EAGAIN; } else { /* 如果无按键动作发生,则进行休眠状态 */ /* 如果ev_press等于0,休眠 */ wait_event_interruptible(button_waitq,ev_press); } }
阻塞:
驱动测试代码:sixthdrvtest.c
#include#include#include#include#include#include#include#include/* * sixthdrvtest */ int fd; void czg_signal_handler(int signum) { unsigned char key_val = 0; read(fd,&key_val,1); printf("key_val: 0x%xn",key_val); } int main(int argc, char **argv) { int ret; int oflags; unsigned char key_val = 0; //signal(SIGIO,czg_signal_handler); fd = open("/dev/buttons",O_RDWR); if(fd < 0) { printf("can't open!n"); return -1; } //fcntl(fd,F_SETOWN,getpid()); // 告诉内核,发给谁 //oflags = fcntl(fd,F_GETFL); //fcntl(fd,F_SETFL,oflags | FASYNC); // 改变fasync标记, //最终会调用到驱动的faync > fasync_helper:初始化/释放fasync_struct //然后当按键按下时候,在irqreturn_t buttons_irq中断处理中调用kill_fasync while(1) { read(fd,&key_val,1); printf("key_val: 0x%xn",key_val); //sleep(1000); } return 0; }
非阻塞:
驱动测试代码:sixthdrvtest.c
#include#include#include#include#include#include#include#include/* * sixthdrvtest */ int fd; void czg_signal_handler(int signum) { unsigned char key_val = 0; read(fd,&key_val,1); printf("key_val: 0x%xn",key_val); } int main(int argc, char **argv) { int ret; int oflags; unsigned char key_val = 0; //signal(SIGIO,czg_signal_handler); fd = open("/dev/buttons",O_RDWR | O_NONBLOCK); if(fd < 0) { printf("can't open!n"); return -1; } //fcntl(fd,F_SETOWN,getpid()); // 告诉内核,发给谁 //oflags = fcntl(fd,F_GETFL); //fcntl(fd,F_SETFL,oflags | FASYNC); // 改变fasync标记, //最终会调用到驱动的faync > fasync_helper:初始化/释放fasync_struct //然后当按键按下时候,在irqreturn_t buttons_irq中断处理中调用kill_fasync while(1) { ret = read(fd,&key_val,1); printf("key_val: 0x%x,ret = %dn",key_val,ret); sleep(4); } return 0; }