当前位置:首页 > 芯闻号 > 充电吧
[导读]Android.mk file syntax specificationIntroduction:This document describes the syntax of Android.mk bu

Android.mk file syntax specification

Introduction:

This document describes the syntax of Android.mk build file
written to describe your C and C++ source files to the Android
NDK. To understand what follows, it is assumed that you have
read the docs/OVERVIEW.html file that explains their role and
usage.

Overview:

An Android.mk file is written to describe your sources to the
build system. More specifically:

The file is really a tiny GNU Makefile fragment that will be
parsed one or more times by the build system. As such, you
should try to minimize the variables you declare there and
do not assume that anything is not defined during parsing.

The file syntax is designed to allow you to group your
sources into ‘modules’. A module is one of the following:

a static library a shared library

Only shared libraries will be installed/copied to your
application package. Static libraries can be used to generate
shared libraries though.

You can define one or more modules in each Android.mk file,
and you can use the same source file in several modules.

The build system handles many details for you. For example, you
don’t need to list header files or explicit dependencies between
generated files in your Android.mk. The NDK build system will
compute these automatically for you.

This also means that, when updating to newer releases of the NDK,
you should be able to benefit from new toolchain/platform support
without having to touch your Android.mk files.

Note that the syntax is very close to the one used in Android.mk files
distributed with the full open-source Android platform sources. While
the build system implementation that uses them is different, this is
an intentional design decision made to allow reuse of ‘external’ libraries’
source code easier for application developers.

Simple example:

Before describing the syntax in details, let’s consider the simple
“hello JNI” example, i.e. the files under:

samples/hello-jni

Here, we can see:

The ‘src’ directory containing the Java sources for the
sample Android project.

The ‘jni’ directory containing the native source for
the sample, i.e. ‘jni/hello-jni.c’

This source file implements a simple shared library that
implements a native method that returns a string to the
VM application.

The ‘jni/Android.mk’ file that describes the shared library
to the NDK build system. Its content is:

———- cut here ——————
LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE    := hello-jni
LOCAL_SRC_FILES := hello-jni.c

include $(BUILD_SHARED_LIBRARY)
———- cut here ——————

Now, let’s explain these lines:

LOCAL_PATH := $(call my-dir)

An Android.mk file must begin with the definition of the LOCAL_PATH variable.
It is used to locate source files in the development tree. In this example,
the macro function ‘my-dir’, provided by the build system, is used to return
the path of the current directory (i.e. the directory containing the
Android.mk file itself).

include $(CLEAR_VARS)

The CLEAR_VARS variable is provided by the build system and points to a
special GNU Makefile that will clear many LOCAL_XXX variables for you
(e.g. LOCAL_MODULE, LOCAL_SRC_FILES, LOCAL_STATIC_LIBRARIES, etc…),
with the exception of LOCAL_PATH. This is needed because all build
control files are parsed in a single GNU Make execution context where
all variables are global.

LOCAL_MODULE := hello-jni

The LOCAL_MODULE variable must be defined to identify each module you
describe in your Android.mk. The name must be unique and not contain
any spaces. Note that the build system will automatically add proper
prefix and suffix to the corresponding generated file. In other words,
a shared library module named ‘foo’ will generate ‘libfoo.so’.

IMPORTANT NOTE:
If you name your module ‘libfoo’, the build system will not
add another ‘lib’ prefix and will generate libfoo.so as well.
This is to support Android.mk files that originate from the
Android platform sources, would you need to use these.

LOCAL_SRC_FILES := hello-jni.c

The LOCAL_SRC_FILES variables must contain a list of C and/or C++ source
files that will be built and assembled into a module. Note that you should
not list header and included files here, because the build system will
compute dependencies automatically for you; just list the source files
that will be passed directly to a compiler, and you should be good.

Note that the default extension for C++ source files is ‘.cpp’. It is
however possible to specify a different one by defining the variable
LOCAL_CPP_EXTENSION. Don’t forget the initial dot (i.e. ‘.cxx’ will
work, but not ‘cxx’).

include $(BUILD_SHARED_LIBRARY)

The BUILD_SHARED_LIBRARY is a variable provided by the build system that
points to a GNU Makefile script that is in charge of collecting all the
information you defined in LOCAL_XXX variables since the latest
‘include $(CLEAR_VARS)’ and determine what to build, and how to do it
exactly. There is also BUILD_STATIC_LIBRARY to generate a static library.

There are more complex examples in the samples directories, with commented
Android.mk files that you can look at.

Reference:

This is the list of variables you should either rely on or define in
an Android.mk. You can define other variables for your own usage, but
the NDK build system reserves the following variable names:

names that begin with LOCAL_  (e.g. LOCAL_MODULE) names that begin with PRIVATE_, NDK_ or APP_  (used internally) lower-case names (used internally, e.g. ‘my-dir’)

If you need to define your own convenience variables in an Android.mk
file, we recommend using the MY_ prefix, for a trivial example:

———- cut here ——————
MY_SOURCES := foo.c
ifneq ($(MY_CONFIG_BAR),)
 MY_SOURCES += bar.c
endif

LOCAL_SRC_FILES += $(MY_SOURCES)

———- cut here ——————

So, here we go:

NDK-provided variables:

These GNU Make variables are defined by the build system before
your Android.mk file is parsed. Note that under certain circumstances
the NDK might parse your Android.mk several times, each with different
definition for some of these variables.

CLEAR_VARS
Points to a build script that undefines nearly all LOCAL_XXX variables
listed in the “Module-description” section below. You must include
the script before starting a new module, e.g.:

  include $(CLEAR_VARS)

BUILD_SHARED_LIBRARY
Points to a build script that collects all the information about the
module you provided in LOCAL_XXX variables and determines how to build
a target shared library from the sources you listed. Note that you
must have LOCAL_MODULE and LOCAL_SRC_FILES defined, at a minimum before
including this file. Example usage:

  include $(BUILD_SHARED_LIBRARY)

note that this will generate a file named lib$(LOCAL_MODULE).so

BUILD_STATIC_LIBRARY
A variant of BUILD_SHARED_LIBRARY that is used to build a target static
library instead. Static libraries are not copied into your
project/packages but can be used to build shared libraries (see
LOCAL_STATIC_LIBRARIES and LOCAL_WHOLE_STATIC_LIBRARIES described below).
Example usage:

  include $(BUILD_STATIC_LIBRARY)

Note that this will generate a file named lib$(LOCAL_MODULE).a

PREBUILT_SHARED_LIBRARY
Points to a build script used to specify a prebuilt shared library.
Unlike BUILD_SHARED_LIBRARY and BUILD_STATIC_LIBRARY, the value
of LOCAL_SRC_FILES must be a single path to a prebuilt shared
library (e.g. foo/libfoo.so), instead of a source file.

You can reference the prebuilt library in another module using
the LOCAL_PREBUILTS variable (see docs/PREBUILTS.html for more
information).

PREBUILT_STATIC_LIBRARY
This is the same as PREBUILT_SHARED_LIBRARY, but for a static library
file instead. See docs/PREBUILTS.html for more.

TARGET_ARCH
Name of the target CPU architecture as it is specified by the
full Android open-source build. This is ‘arm’ for any ARM-compatible
build, independent of the CPU architecture revision.

TARGET_PLATFORM
Name of the target Android platform when this Android.mk is parsed.
For example, ‘android-3’ correspond to Android 1.5 system images. For
a complete list of platform names and corresponding Android system
images, read docs/STABLE-APIS.html.

TARGET_ARCH_ABI
Name of the target CPU+ABI when this Android.mk is parsed.
Two values are supported at the moment:

   armeabi
        For ARMv5TE

   armeabi-v7a

NOTE: Up to Android NDK 1.6_r1, this variable was simply defined
      as 'arm'. However, the value has been redefined to better
      match what is used internally by the Android platform.

For more details about architecture ABIs and corresponding
compatibility issues, please read docs/CPU-ARCH-ABIS.html

Other target ABIs will be introduced in future releases of the NDK
and will have a different name. Note that all ARM-based ABIs will
have 'TARGET_ARCH' defined to 'arm', but may have different
'TARGET_ARCH_ABI'

TARGET_ABI
The concatenation of target platform and ABI, it really is defined
as(TARGET_ARCH_ABI) and is useful when you want
to test against a specific target system image for a real device.

By default, this will be 'android-3-armeabi'

(Up to Android NDK 1.6_r1, this used to be 'android-3-arm' by default)

NDK-provided function macros:

The following are GNU Make ‘function’ macros, and must be evaluated
by using ‘$(call )’. They return textual information.

my-dir
Returns the path of the last included Makefile, which typically is
the current Android.mk’s directory. This is useful to define
LOCAL_PATH at the start of your Android.mk as with:

    LOCAL_PATH := $(call my-dir)

IMPORTANT NOTE: Due to the way GNU Make works, this really returns
the path of the *last* *included* *Makefile* during the parsing of
build scripts. Do not call my-dir after including another file.

For example, consider the following example:

    LOCAL_PATH := $(call my-dir)

    ... declare one module

    include $(LOCAL_PATH)/foo/Android.mk

    LOCAL_PATH := $(call my-dir)

    ... declare another module

The problem here is that the second call to 'my-dir' will define
LOCAL_PATH to $PATH/foo instead of $PATH, due to the include that
was performed before that.

For this reason, it's better to put additional includes after
everything else in an Android.mk, as in:

    LOCAL_PATH := $(call my-dir)

    ... declare one module

    LOCAL_PATH := $(call my-dir)

    ... declare another module

    # extra includes at the end of the Android.mk
    include $(LOCAL_PATH)/foo/Android.mk

If this is not convenient, save the value of the first my-dir call
into another variable, for example:

    MY_LOCAL_PATH := $(call my-dir)

    LOCAL_PATH := $(MY_LOCAL_PATH)

    ... declare one module

    include $(LOCAL_PATH)/foo/Android.mk

    LOCAL_PATH := $(MY_LOCAL_PATH)

    ... declare another module

all-subdir-makefiles
Returns a list of Android.mk located in all sub-directories of
the current ‘my-dir’ path. For example, consider the following
hierarchy:

    sources/foo/Android.mk
    sources/foo/lib1/Android.mk
    sources/foo/lib2/Android.mk

If sources/foo/Android.mk contains the single line:

    include $(call all-subdir-makefiles)

Then it will include automatically sources/foo/lib1/Android.mk and
sources/foo/lib2/Android.mk

This function can be used to provide deep-nested source directory
hierarchies to the build system. Note that by default, the NDK
will only look for files in sources/*/Android.mk

this-makefile
Returns the path of the current Makefile (i.e. where the function
is called).

parent-makefile
Returns the path of the parent Makefile in the inclusion tree,
i.e. the path of the Makefile that included the current one.

grand-parent-makefile
Guess what…

import-module
A function that allows you to find and include the Android.mk
of another module by name. A typical example is:

  $(call import-module,)

And this will look for the module taggedin the list of
directories referenced by your NDK_MODULE_PATH environment
variable, and include its Android.mk automatically for you.

Read docs/IMPORT-MODULE.html for more details.

Module-description variables:

The following variables are used to describe your module to the build
system. You should define some of them between an ‘include(BUILD_XXXXX)'. As written previously, $(CLEAR_VARS) is
a script that will undefine/clear all of these variables, unless explicitly
noted in their description.

LOCAL_PATH
This variable is used to give the path of the current file.
You MUST define it at the start of your Android.mk, which can
be done with:

  LOCAL_PATH := $(call my-dir)

This variable is *not* cleared by $(CLEAR_VARS) so only one
definition per Android.mk is needed (in case you define several
modules in a single file).

LOCAL_MODULE
This is the name of your module. It must be unique among all
module names, and shall not contain any space. You MUST define
it before including any $(BUILD_XXXX) script.

By default, the module name determines the name of generated files,
e.g. lib.so for a shared library module named. However
you should only refer to other modules with their 'normal'
name (e.g.) in your NDK build files (either Android.mk
or Application.mk)

You can override this default with LOCAL_MODULE_FILENAME (see below)

LOCAL_MODULE_FILENAME
This variable is optional, and allows you to redefine the name of
generated files. By default, module  will always generate a
static library named lib.a or a shared library named lib.so,
which are standard Unix conventions.

You can override this by defining LOCAL_MODULE_FILENAME, For example:

    LOCAL_MODULE := foo-version-1
    LOCAL_MODULE_FILENAME := libfoo

NOTE: You should not put a path or file extension in your
LOCAL_MODULE_FILENAME, these will be handled automatically by the
build system.

LOCAL_SRC_FILES
This is a list of source files that will be built for your module.
Only list the files that will be passed to a compiler, since the
build system automatically computes dependencies for you.

Note that source files names are all relative to LOCAL_PATH and
you can use path components, e.g.:

  LOCAL_SRC_FILES := foo.c 
                     toto/bar.c

NOTE: Always use Unix-style forward slashes (/) in build files.
      Windows-style back-slashes will not be handled properly.

LOCAL_CPP_EXTENSION
This is an optional variable that can be defined to indicate
the file extension(s) of C++ source files. They must begin with a dot.
The default is ‘.cpp’ but you can change it. For example:

    LOCAL_CPP_EXTENSION := .cxx

Since NDK r7, you can list several extensions in this variable, as in:

    LOCAL_CPP_EXTENSION := .cxx .cpp .cc

LOCAL_CPP_FEATURES
This is an optional variable that can be defined to indicate
that your code relies on specific C++ features. To indicate that
your code uses RTTI (RunTime Type Information), use the following:

    LOCAL_CPP_FEATURES := rtti

To indicate that your code uses C++ exceptions, use:

    LOCAL_CPP_FEATURES := exceptions

You can also use both of them with (order is not important):

    LOCAL_CPP_FEATURES := rtti features

The effect of this variable is to enable the right compiler/linker
flags when building your modules from sources. For prebuilt binaries,
this also helps declare which features the binary relies on to ensure
the final link works correctly.

It is recommended to use this variable instead of enabling -frtti and
-fexceptions directly in your LOCAL_CPPFLAGS definition.

LOCAL_C_INCLUDES
An optional list of paths, relative to the NDK root directory,
which will be appended to the include search path when compiling
all sources (C, C++ and Assembly). For example:

    LOCAL_C_INCLUDES := sources/foo

Or even:

    LOCAL_C_INCLUDES := $(LOCAL_PATH)/../foo

These are placed before any corresponding inclusion flag in
LOCAL_CFLAGS / LOCAL_CPPFLAGS

The LOCAL_C_INCLUDES path are also used automatically when
launching native debugging with ndk-gdb.

LOCAL_CFLAGS
An optional set of compiler flags that will be passed when building
C and C++ source files.

This can be useful to specify additional macro definitions or
compile options.

IMPORTANT: Try not to change the optimization/debugging level in
           your Android.mk, this can be handled automatically for
           you by specifying the appropriate information in
           your Application.mk, and will let the NDK generate
           useful data files used during debugging.

NOTE: In android-ndk-1.5_r1, the corresponding flags only applied
      to C source files, not C++ ones. This has been corrected to
      match the full Android build system behaviour. (You can use
      LOCAL_CPPFLAGS to specify flags for C++ sources only now).

It is possible to specify additional include paths with
LOCAL_CFLAGS += -I, however, it is better to use LOCAL_C_INCLUDES
for this, since the paths will then also be used during native
debugging with ndk-gdb.

LOCAL_CXXFLAGS
An alias for LOCAL_CPPFLAGS. Note that use of this flag is obsolete
as it may disappear in future releases of the NDK.

LOCAL_CPPFLAGS
An optional set of compiler flags that will be passed when building
C++ source files only. They will appear after the LOCAL_CFLAGS
on the compiler’s command-line.

NOTE: In android-ndk-1.5_r1, the corresponding flags applied to
      both C and C++ sources. This has been corrected to match the
      full Android build system. (You can use LOCAL_CFLAGS to specify
      flags for both C and C++ sources now).

LOCAL_STATIC_LIBRARIES
The list of static libraries modules (built with BUILD_STATIC_LIBRARY)
that should be linked to this module. This only makes sense in
shared library modules.

LOCAL_SHARED_LIBRARIES
The list of shared libraries modules this module depends on at runtime.
This is necessary at link time and to embed the corresponding information
in the generated file.

LOCAL_WHOLE_STATIC_LIBRARIES
A variant of LOCAL_STATIC_LIBRARIES used to express that the corresponding
library module should be used as “whole archives” to the linker. See the
GNU linker’s documentation for the –whole-archive flag.

This is generally useful when there are circular dependencies between
several static libraries. Note that when used to build a shared library,
this will force all object files from your whole static libraries to be
added to the final binary. This is not true when generating executables
though.

LOCAL_LDLIBS
The list of additional linker flags to be used when building your
module. This is useful to pass the name of specific system libraries
with the “-l” prefix. For example, the following will tell the linker
to generate a module that links to /system/lib/libz.so at load time:

  LOCAL_LDLIBS := -lz

See docs/STABLE-APIS.html for the list of exposed system libraries you
can linked against with this NDK release.

LOCAL_ALLOW_UNDEFINED_SYMBOLS
By default, any undefined reference encountered when trying to build
a shared library will result in an “undefined symbol” error. This is a
great help to catch bugs in your source code.

However, if for some reason you need to disable this check, set this
variable to 'true'. Note that the corresponding shared library may fail
to load at runtime.

LOCAL_ARM_MODE
By default, ARM target binaries will be generated in ‘thumb’ mode, where
each instruction are 16-bit wide. You can define this variable to ‘arm’
if you want to force the generation of the module’s object files in
‘arm’ (32-bit instructions) mode. E.g.:

  LOCAL_ARM_MODE := arm

Note that you can also instruct the build system to only build specific
sources in ARM mode by appending an '.arm' suffix to its source file
name. For example, with:

   LOCAL_SRC_FILES := foo.c bar.c.arm

Tells the build system to always compile 'bar.c' in ARM mode, and to
build foo.c according to the value of LOCAL_ARM_MODE.

NOTE: Setting APP_OPTIM to 'debug' in your Application.mk will also force
      the generation of ARM binaries as well. This is due to bugs in the
      toolchain debugger that don't deal too well with thumb code.

LOCAL_ARM_NEON
Defining this variable to ‘true’ allows the use of ARM Advanced SIMD
(a.k.a. NEON) GCC intrinsics in your C and C++ sources, as well as
NEON instructions in Assembly files.

You should only define it when targeting the 'armeabi-v7a' ABI that
corresponds to the ARMv7 instruction set. Note that not all ARMv7
based CPUs support the NEON instruction set extensions and that you
should perform runtime detection to be able to use this code at runtime
safely. To learn more about this, please read the documentation at
docs/CPU-ARM-NEON.html and docs/CPU-FEATURES.html.

Alternatively, you can also specify that only specific source files
may be compiled with NEON support by using the '.neon' suffix, as
in:

    LOCAL_SRC_FILES = foo.c.neon bar.c zoo.c.arm.neon

In this example, 'foo.c' will be compiled in thumb+neon mode,
'bar.c' will be compiled in 'thumb' mode, and 'zoo.c' will be
compiled in 'arm+neon' mode.

Note that the '.neon' suffix must appear after the '.arm' suffix
if you use both (i.e. foo.c.arm.neon works, but not foo.c.neon.arm !)

LOCAL_DISABLE_NO_EXECUTE
Android NDK r4 added support for the “NX bit” security feature.
It is enabled by default, but you can disable it if you really
need to by setting this variable to ‘true’.

NOTE: This feature does not modify the ABI and is only enabled on
      kernels targeting ARMv6+ CPU devices. Machine code generated
      with this feature enabled will run unmodified on devices
      running earlier CPU architectures.

For more information, see:

    http://en.wikipedia.org/wiki/NX_bit
    http://www.gentoo.org/proj/en/hardened/gnu-stack.xml

LOCAL_DISABLE_RELRO
By default, NDK compiled code is built with read-only relocations
and GOT protection.  This instructs the runtime linker to mark
certain regions of memory as being read-only after relocation,
making certain security exploits (such as GOT overwrites) harder
to perform.

It is enabled by default, but you can disable it if you *really*
need to by setting this variable to 'true'.

NOTE: These protections are only effective on newer Android devices
      ("Jelly Bean" and beyond). The code will still run on older
      versions (albeit without memory protections).

For more information, see:

    http://isisblogs.poly.edu/2011/06/01/relro-relocation-read-only/
    http://www.akkadia.org/drepper/nonselsec.pdf (section 6)

LOCAL_EXPORT_CFLAGS
Define this variable to record a set of C/C++ compiler flags that will
be added to the LOCAL_CFLAGS definition of any other module that uses
this one with LOCAL_STATIC_LIBRARIES or LOCAL_SHARED_LIBRARIES.

For example, consider the module 'foo' with the following definition:

    include $(CLEAR_VARS)
    LOCAL_MODULE := foo
    LOCAL_SRC_FILES := foo/foo.c
    LOCAL_EXPORT_CFLAGS := -DFOO=1
    include $(BUILD_STATIC_LIBRARY)

And another module, named 'bar' that depends on it as:

    include $(CLEAR_VARS)
    LOCAL_MODULE := bar
    LOCAL_SRC_FILES := bar.c
    LOCAL_CFLAGS := -DBAR=2
    LOCAL_STATIC_LIBRARIES := foo
    include $(BUILD_SHARED_LIBRARY)

Then, the flags '-DFOO=1 -DBAR=2' will be passed to the compiler when
building bar.c

Exported flags are prepended to your module's LOCAL_CFLAGS so you can
easily override them. They are also transitive: if 'zoo' depends on
'bar' which depends on 'foo', then 'zoo' will also inherit all flags
exported by 'foo'.

Finally, exported flags are *not* used when building the module that
exports them. In the above example, -DFOO=1 would not be passed to the
compiler when building foo/foo.c.

LOCAL_EXPORT_CPPFLAGS
Same as LOCAL_EXPORT_CFLAGS, but for C++ flags only.

LOCAL_EXPORT_C_INCLUDES
Same as LOCAL_EXPORT_CFLAGS, but for C include paths.
This can be useful if ‘bar.c’ wants to include headers
that are provided by module ‘foo’.

LOCAL_EXPORT_LDLIBS
Same as LOCAL_EXPORT_CFLAGS, but for linker flags. Note that the
imported linker flags will be appended to your module’s LOCAL_LDLIBS
though, due to the way Unix linkers work.

This is typically useful when module 'foo' is a static library and has
code that depends on a system library. LOCAL_EXPORT_LDLIBS can then be
used to export the dependency. For example:

    include $(CLEAR_VARS)
    LOCAL_MODULE := foo
    LOCAL_SRC_FILES := foo/foo.c
    LOCAL_EXPORT_LDLIBS := -llog
    include $(BUILD_STATIC_LIBRARY)

    include $(CLEAR_VARS)
    LOCAL_MODULE := bar
    LOCAL_SRC_FILES := bar.c
    LOCAL_STATIC_LIBRARIES := foo
    include $(BUILD_SHARED_LIBRARY)

There, libbar.so will be built with a -llog at the end of the linker
command to indicate that it depends on the system logging library,
because it depends on 'foo'.

LOCAL_SHORT_COMMANDS
Set this variable to ‘true’ when your module has a very high number of
sources and/or dependent static or shared libraries. This forces the
build system to use an intermediate list file, and use it with the
library archiver or static linker with the @$(listfile) syntax.

This can be useful on Windows, where the command-line only accepts
a maximum of 8191 characters, which can be too small for complex
projects.

This also impacts the compilation of individual source files, placing
nearly all compiler flags inside list files too.

Note that any other value than 'true' will revert to the default
behaviour. You can also define APP_SHORT_COMMANDS in your
Application.mk to force this behaviour for all modules in your
project.

NOTE: We do not recommend enabling this feature by default, since it
      makes the build slower.

LOCAL_FILTER_ASM
Define this variable to a shell command that will be used to filter
the assembly files from, or generated from, your LOCAL_SRC_FILES.

When it is defined, the following happens:

  - Any C or C++ source file is generated into a temporary assembly
    file (instead of being compiled into an object file).

  - Any temporary assembly file, and any assembly file listed in
    LOCAL_SRC_FILES is sent through the LOCAL_FILTER_ASM command
    to generate _another_ temporary assembly file.

  - These filtered assembly files are compiled into object file.

In other words, If you have:

  LOCAL_SRC_FILES  := foo.c bar.S
  LOCAL_FILTER_ASM := myasmfilter

foo.c --1--> $OBJS_DIR/foo.S.original --2--> $OBJS_DIR/foo.S --3--> $OBJS_DIR/foo.o
bar.S                                 --2--> $OBJS_DIR/bar.S --3--> $OBJS_DIR/bar.o

Were "1" corresponds to the compiler, "2" to the filter, and "3" to the
assembler. The filter must be a standalone shell command that takes the
name of the input file as its first argument, and the name of the output
file as the second one, as in:

    myasmfilter $OBJS_DIR/foo.S.original $OBJS_DIR/foo.S
    myasmfilter bar.S $OBJS_DIR/bar.S
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭