当前位置:首页 > 芯闻号 > 充电吧
[导读]我们距离通用人工智能可能还有多远?其实人工智能的目标就是找寻那个通用人工智能,而类脑计算是实现它的一个重要途径 。 通用智能和当下的智能到底有什么实质性的区别, 作为本文结尾, 我们来看一下:对数据的

我们距离通用人工智能可能还有多远?

其实人工智能的目标就是找寻那个通用人工智能,而类脑计算是实现它的一个重要途径 。 通用智能和当下的智能到底有什么实质性的区别, 作为本文结尾, 我们来看一下:

对数据的使用效率: 比如大脑对数据的应用效率和 AI 算法并非一个等级, 你看到一个数据, 就可以充分的提取里面的信息,比如看到一个陌生人的脸, 你就记住他了, 但是对于目前的 AI 算法, 这是不可能的, 因为我们需要大量的照片输入让他掌握这件事。 我们可以轻松的在学完蛙泳的时候学习自由泳, 这对于 AI,就是一个困难的问题, 也就是说,同样的效率, 人脑能够从中很快提取到信息, 形成新的技能, AI 算法却差的远。

这是为什呢? 可能这里的挂件体现在一种被称为迁移学习的能力。虽然当下的深度学习算法也具备这一类举一反三的迁移学习能力, 但是往往集中在一些真正非常相近的任务里, 人的表现却灵活的多。这是为什么呢? 也许, 目前的 AI 算法缺少一种元学习的能力。 和为元学习, 就是提取一大类问题里类似的本质, 我们人类非常容易干的一个事情。 到底什么造成了人工神经网络和人的神经网路的差距, 还是未知的, 而这个问题也构成一个非常主流的研究方向。

能耗比:如果和人类相比, 人工智能系统完成同等任务的功耗是人的极多倍数(比如阿法狗是人脑消耗的三百倍, 3000MJ vs 10MJ 5 小时比赛)。 如果耗能如此剧烈, 我们无法想象在能源紧张的地球可以很容易大量普及这样的智能。 那么这个问题有没有解呢?  当然有, 一种, 是我们本身对能量提取的能力大大增强, 比如小型可控核聚变实用化。 另一种, 依然要依靠算法的进步, 既然人脑可以做到的, 我们相信通过不断仿生机器也可以接近。 这一点上我们更多看到的信息是, 人工智能的能耗比和人相比, 还是有很大差距的。

不同数据整合: 我们离终极算法相差甚远的另一个重要原因可能是现实人类在解决的 AI 问题犹如一个个分离的孤岛, 比如说视觉是视觉, 自然语言是自然语言, 这些孤岛并没有被打通。 相反,人类的智慧里, 从来就没有分离的视觉, 运动或自然语言, 这点上看, 我们还处在 AI 的初级阶段。 我们可以预想, 人类的智慧是不可能建立在一个个分离的认知孤岛上的, 我们的世界模型一定建立在把这些孤立的信息领域打通的基础上, 才可以做到真正对某个事物的认知, 无论是一个苹果, 还是一只狗。

沟通与社会性: 另外, 人类的智慧是建立在沟通之上的, 人与人相互沟通结成社会, 社会基础上才有文明, 目前的人工智能体还没有沟通, 但不代表以后是不能的, 这点, 也是一个目前的 AI 水平与强 AI(超级算法)的距离所在。

有的人认为, 我们可以直接通过模拟大脑的神经元,组成一个和大脑类似复杂度的复杂系统, 让它自我学习和进化, 从而实现强 AI。 从我这个复杂系统专业的角度看, 这还是一个不太现实的事情。因为复杂系统里面最重要的是涌现,也就是说当组成一个集合的元素越来越多,相互作用越来越复杂, 这个集合在某个特殊条件下会出现一些特殊的总体属性,比如强 AI,自我意识。 但是我们几乎不可能指望只要我们堆积了那么多元素, 这个现象(相变)就一定会发生。

至于回到那个未来人工智能曲线发展展望的话题, 我们可以看到, 这些不确定的因素都会使得这条发展曲线变得不可确定。 然而有一点是肯定的, 就是正在有越来越多非常聪明的人, 开始迅速的进入到这个领域, 越来越多的投资也在进来。 这说明, AI 已经是势不可挡的称为人类历史的增长极, 即使有一些不确定性, 它却不可能再进入到一个停滞不前的低谷了, 我们也许不会一天两天就接近终极算法, 但却一定会在细分领域取得一个又一个突破。无论是视觉, 自然语言, 还是运动控制。

能否走向通用人工智能的确是人工智能未来发展最大的变数, 或许, 我们真正的沉下心来去和大脑取经还是可以或多或少的帮助我们。 因为本质上, 我们在人工智能的研究上所作的, 依然是在模拟人类大脑的奥秘。 我们越接近人类智慧的终极算法, 就越能得到更好的人工智能算法。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭