当前位置:首页 > 芯闻号 > 充电吧
[导读]GBDT 回归的原理和Python 实现

完整实现代码请参考github:

1. 原理篇

我们用人话而不是大段的数学公式来讲讲GBDT回归是怎么一回事。

1.1 温故知新

回归树是GBDT的基础,之前的一篇文章曾经讲过回归树的原理和实现。


1.2 预测年龄

仍然以预测同事年龄来举例,从《回归树》那篇文章中我们可以知道,如果需要通过一个常量来预测同事的年龄,平均值是最佳的选择之一。

1.3 年龄的残差

我们不妨假设同事的年龄分别为5岁、6岁、7岁,那么同事的平均年龄就是6岁。所以我们用6岁这个常量来预测同事的年龄,即[6, 6, 6]。每个同事年龄的残差 = 年龄 – 预测值 = [5, 6, 7] – [6, 6, 6],所以残差为[-1, 0, 1]

1.4 预测年龄的残差

为了让模型更加准确,其中一个思路是让残差变小。如何减少残差呢?我们不妨对残差建立一颗回归树,然后预测出准确的残差。假设这棵树预测的残差是[-0.9, 0, 0.9],将上一轮的预测值和这一轮的预测值求和,每个同事的年龄 = [6, 6, 6] + [-0.9, 0, 0.9] = [5.1, 6, 6.9],显然与真实值[5, 6, 7]更加接近了, 年龄的残差此时变为[-0.1, 0, 0.1]。显然,预测的准确性得到了提升。

1.5 GBDT

重新整理一下思路,假设我们的预测一共迭代3轮 年龄:[5, 6, 7]

第1轮预测:[6, 6, 6] (平均值)

第1轮残差:[-1, 0, 1]

第2轮预测:[6, 6, 6] (平均值) + [-0.9, 0, 0.9] (第1颗回归树) = [5.1, 6, 6.9]

第2轮残差:[-0.1, 0, 0.1]

第3轮预测:[6, 6, 6] (平均值) + [-0.9, 0, 0.9] (第1颗回归树) + [-0.08, 0, 0.07] (第2颗回归树) = [5.02, 6, 6.97]

第3轮残差:[-0.08, 0, 0.03]

看上去残差越来越小,而这种预测方式就是GBDT算法。

1.6 公式推导

看到这里,相信您对GBDT已经有了直观的认识。这么做有什么科学依据么,为什么残差可以越来越小呢?前方小段数学公式低能预警。

  1. 假设要做m轮预测,预测函数为Fm,初始常量或每一轮的回归树为fm,输入变量为X,有:

  2. 设要预测的变量为y,采用MSE作为损失函数:

  3. 我们知道泰勒公式的一阶展开式是长成这个样子滴:

  4. 如果:

  5. 那么,根据式3和式4可以得出:

  6. 根据式2可以知道,损失函数的一阶偏导数为:

  7. 根据式6可以知道,损失函数的二阶偏导数为:

  8. 蓄力结束,开始放大招。根据式1,损失函数的一阶导数为:

  9. 根据式5,将式8进一步展开为:

  10. 令式9,即损失函数的一阶偏导数为0,那么:

  11. 将式6,式7代入式9得到:

因此,我们需要通过用第m-1轮残差的均值来得到函数fm,进而优化函数Fm。而回归树的原理就是通过最佳划分区域的均值来进行预测。所以fm可以选用回归树作为基础模型,将初始值,m-1颗回归树的预测值相加便可以预测y。

2. 实现篇

本人用全宇宙最简单的编程语言——Python实现了GBDT回归算法,没有依赖任何第三方库,便于学习和使用。简单说明一下实现过程,更详细的注释请参考本人github上的代码。

2.1 导入回归树类

回归树是我之前已经写好的一个类,在之前的文章详细介绍过,代码请参考:

regression_tree.pygithub.com


1

from ..tree.regression_tree import RegressionTree

2.2 创建GradientBoostingBase类

初始化,存储回归树、学习率、初始预测值和变换函数。(注:回归不需要做变换,因此函数的返回值等于参数)


1

2

3

4

5

6

class GradientBoostingBase(object):

    def __init__(self):

        self.trees = None

        self.lr = None

        self.init_val = None

        self.fn = lambda x: x

2.3 计算初始预测值

初始预测值即y的平均值。


1

2

def _get_init_val(self, y):

    return sum(y) / len(y)

2.4 计算残差


1

2

def _get_residuals(self, y, y_hat):

    return [yi - self.fn(y_hat_i) for yi, y_hat_i in zip(y, y_hat)]

2.5 训练模型

训练模型的时候需要注意以下几点: 1. 控制树的最大深度max_depth; 2. 控制分裂时最少的样本量min_samples_split; 3. 训练每一棵回归树的时候要乘以一个学习率lr,防止模型过拟合; 4. 对样本进行抽样的时候要采用有放回的抽样方式。


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

def fit(self, X, y, n_estimators, lr, max_depth, min_samples_split, subsample=None):

    self.init_val = self._get_init_val(y)

 

    n = len(y)

    y_hat = [self.init_val] * n

    residuals = self._get_residuals(y, y_hat)

 

    self.trees = []

    self.lr = lr

    for _ in range(n_estimators):

        idx = range(n)

        if subsample is not None:

            k = int(subsample * n)

            idx = choices(population=idx, k=k)

        X_sub = [X[i] for i in idx]

        residuals_sub = [residuals[i] for i in idx]

        y_hat_sub = [y_hat[i] for i in idx]

 

        tree = RegressionTree()

        tree.fit(X_sub, residuals_sub, max_depth, min_samples_split)

 

        self._update_score(tree, X_sub, y_hat_sub, residuals_sub)

 

        y_hat = [y_hat_i + lr * res_hat_i for y_hat_i,

                    res_hat_i in zip(y_hat, tree.predict(X))]

 

        residuals = self._get_residuals(y, y_hat)

        self.trees.append(tree)

2.6 预测一个样本


1

2

def _predict(self, Xi):

    return self.fn(self.init_val + sum(self.lr * tree._predict(Xi) for tree in self.trees))

2.7 预测多个样本


1

2

def predict(self, X):

    return [self._predict(Xi) for Xi in X]

3 效果评估

3.1 main函数

使用著名的波士顿房价数据集,按照7:3的比例拆分为训练集和测试集,训练模型,并统计准确度。


1

2

3

4

5

6

7

8

9

10

11

12

13

14

@run_time

def main():

    print("Tesing the accuracy of GBDT regressor...")

 

    X, y = load_boston_house_prices()

 

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, random_state=10)

 

    reg = GradientBoostingRegressor()

    reg.fit(X=X_train, y=y_train, n_estimators=4,

            lr=0.5, max_depth=2, min_samples_split=2)

 

    get_r2(reg, X_test, y_test)

3.2 效果展示

最终拟合优度0.851,运行时间2.2秒,效果还算不错~

3.3 工具函数

本人自定义了一些工具函数,可以在github上查看

utils.pygithub.com

1. run_time – 测试函数运行时间

2. load_boston_house_prices – 加载波士顿房价数据

3. train_test_split – 拆分训练集、测试集

4. get_r2 – 计算拟合优度


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭