2018年度GtiHub开源项目盘点!
扫描二维码
随时随地手机看文章
谷歌的 AdaNet
开源地址:https://github.com/tensorflow/adanet
AdaNet 是一个自动学习高质量模型的框架,对编程专业知识没有要求。由于 AdaNet 由谷歌开发,因此这一框架基于 TensorFlow。你可以使用 AdaNet 创建所有的模型,同时可以扩展它的应用去训练神经网络。
强化学习
因为我在 2018 年的综述文章中盘点过一些强化学习开源项目,因此这一章节的介绍会相当简单。我希望在包括 RL 在内的这些章节中,能够促进大家对我们这个社区的讨论,也希望能过加速这一领域的研究进程。
首先,你可以先去看一下 OpenAI 的 Spinning Up 开源项目(项目地址:https://github.com/openai/spinningup),它是一个针对初学者的完全教育型的开源项目。然后可以去看看谷歌的 dopamine 开源项目(项目地址:https://github.com/google/dopamine),它是一个研究框架,用来加速这一仍旧处于初步发展阶段的领域的研究。接下来,让我们也了解一下其他的开源项目。
DeepMimic
开源地址:https://github.com/xbpeng/DeepMimic
如果你在社交媒体上关注了一些研究者,你一定在视频中看到过上面的图像。一个棍形人在地面上奔跑,或者尝试站起来,或者其他一些动作。亲爱的读者,这些就是(人体)动作中的强化学习。
这里有一个强化学习的标志性示例——训练仿真人形来模仿多个动作技能。上面开源项目的链接页面包括代码、示例以及循序渐进的练习指南。
Reinforcement Learning Notebooks
开源地址:https://github.com/Pulkit-Khandelwal/Reinforcement-Learning-Notebooks
这个开源项目是一个强化学习算法集,这些算法来自 Richard Sutton 和 Andrew Barto 所写的书以及其他研究论文,它们在开源项目中以 Python notebooks 的格式呈现。
正如该开源项目的开发者所提到的,如果你在学习的过程中同时进行实操练习,你就能真正学会它。这个项目比较复杂,如果不进行实操或者仅仅像读小说一样去阅读资源内容,你将一无所获。
via:https://www.analyticsvidhya.com/blog/2018/12/best-data-science-machine-learning-projects-github/