Linux内核中的通用链表list.h在windows下的移植实现
扫描二维码
随时随地手机看文章
在windows的通用开发平台上,有MFC或者STL的支持,很少自己去编写一个链表list程序。现在把Linux下的list.h取出来,在Windows平台上实现:
我这里用的是Linux2.4版本的,2.6版本的其实都一样,下面是修改后的list.h源文件,注意几点:① 注释掉了和Linux相关的字眼,如第四行、第六行等,添加了prefetch(w)两个函数的实现;② 因为是在C语言下实现(不是C++),VC6-VC2005-VC2010编译器均不支持C99,而这些编译器遵循的C89规范里不支持inline关键字,所以关键字inline要去掉,直接查找替换为无即可,这一点和gcc的编译器不同;③ C语言里,函数中所有的变量定义一定要放在函数的开始部分,一次性定义完毕,不要在函数体内再定义变量,这一点高版本的VS2010也是如此。
#ifndef _LINUX_LIST_H #define _LINUX_LIST_H //#if defined(__KERNEL__) || defined(_LVM_H_INCLUDE) //#includevoid prefetch(const void *x) {;} void prefetchw(const void *x) {;} /* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ struct list_head { struct list_head *next, *prev; }; #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) struct list_head name = LIST_HEAD_INIT(name) #define INIT_LIST_HEAD(ptr) do { (ptr)->next = (ptr); (ptr)->prev = (ptr); } while (0) /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { next->prev = new; new->next = next; new->prev = prev; prev->next = new; } /** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static void list_add(struct list_head *new, struct list_head *head) { __list_add(new, head, head->next); } /** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static void list_add_tail(struct list_head *new, struct list_head *head) { __list_add(new, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static void __list_del(struct list_head *prev, struct list_head *next) { next->prev = prev; prev->next = next; } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty on entry does not return true after this, the entry is in an undefined state. */ static void list_del(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->next = (void *) 0; entry->prev = (void *) 0; } /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ static void list_del_init(struct list_head *entry) { __list_del(entry->prev, entry->next); INIT_LIST_HEAD(entry); } /** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */ static void list_move(struct list_head *list, struct list_head *head) { __list_del(list->prev, list->next); list_add(list, head); } /** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */ static void list_move_tail(struct list_head *list, struct list_head *head) { __list_del(list->prev, list->next); list_add_tail(list, head); } /** * list_empty - tests whether a list is empty * @head: the list to test. */ static int list_empty(struct list_head *head) { return head->next == head; } static void __list_splice(struct list_head *list, struct list_head *head) { struct list_head *first = list->next; struct list_head *last = list->prev; struct list_head *at = head->next; first->prev = head; head->next = first; last->next = at; at->prev = last; } /** * list_splice - join two lists * @list: the new list to add. * @head: the place to add it in the first list. */ static void list_splice(struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head); } /** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */ static void list_splice_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head); INIT_LIST_HEAD(list); } } /** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_struct within the struct. */ #define list_entry(ptr, type, member) ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member))) /** * list_for_each - iterate over a list * @pos: the &struct list_head to use as a loop counter. * @head: the head for your list. */ #define list_for_each(pos, head) for (pos = (head)->next, prefetch(pos->next); pos != (head); pos = pos->next, prefetch(pos->next)) /** * list_for_each_prev - iterate over a list backwards * @pos: the &struct list_head to use as a loop counter. * @head: the head for your list. */ #define list_for_each_prev(pos, head) for (pos = (head)->prev, prefetch(pos->prev); pos != (head); pos = pos->prev, prefetch(pos->prev)) /** * list_for_each_safe - iterate over a list safe against removal of list entry * @pos: the &struct list_head to use as a loop counter. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_safe(pos, n, head) for (pos = (head)->next, n = pos->next; pos != (head); pos = n, n = pos->next) /** * list_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop counter. * @head: the head for your list. * @member: the name of the list_struct within the struct. */ #define list_for_each_entry(pos, head, member) for (pos = list_entry((head)->next, typeof(*pos), member), prefetch(pos->member.next); &pos->member != (head); pos = list_entry(pos->member.next, typeof(*pos), member), prefetch(pos->member.next)) /** * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop counter. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_struct within the struct. */ #define list_for_each_entry_safe(pos, n, head, member) for (pos = list_entry((head)->next, typeof(*pos), member), n = list_entry(pos->member.next, typeof(*pos), member); &pos->member != (head); pos = n, n = list_entry(n->member.next, typeof(*n), member)) /** * list_for_each_entry_continue - iterate over list of given type * continuing after existing point * @pos: the type * to use as a loop counter. * @head: the head for your list. * @member: the name of the list_struct within the struct. */ #define list_for_each_entry_continue(pos, head, member) for (pos = list_entry(pos->member.next, typeof(*pos), member), prefetch(pos->member.next); &pos->member != (head); pos = list_entry(pos->member.next, typeof(*pos), member), prefetch(pos->member.next)) //#endif /* __KERNEL__ || _LVM_H_INCLUDE */ #endif
下面是测试程序:
#include "stdio.h" #include#include#include "list.h" //自定义的数据结构 struct list_test_struct { struct list_head list; int key; int data; }; void main() { struct list_head list = {0}; //定义链表(头) struct list_head *pos = NULL; struct list_head *n = NULL; int i=0; printf("定义链表n"); printf("初始化链表!rn"); INIT_LIST_HEAD(&list); //初始化链表(头尾相接,形成空链表循环) //判断链表是否为空 printf("判断链表是否为空:"); if(list_empty(&list)){ printf("空rn"); }else{ printf("非空rn"); } //批量添加节点 printf("批量添加节点:rn"); for(i=0;ikey=key; st->data=data; list_add(&st->list, &list); } //显示列表所有节点 printf("显示列表所有节点:rn"); list_for_each(pos,&list) { struct list_test_struct *st=list_entry(pos,struct list_test_struct,list); printf( "t node:key(%d),data(%d)rn",st->key,st->data); } //释放所有节点资源 printf("释放所有节点资源!rn"); list_for_each_safe(pos,n,&list) { struct list_test_struct *st=list_entry(pos,struct list_test_struct,list); list_del(pos); //删除节点,删除节点必须在删除节点内存之前 free(st); //释放节点内存 } }
对于复杂的宏定义,可以使用人工宏展开方式来查看:【Setting】 ->【C/C++】在底部的输入选项中,添加“/P”再次编译可以得到一个扩展名为i的文件,既是宏展开后的文件