当前位置:首页 > 芯闻号 > 充电吧
[导读]前言:本文不适合 给一组数据15分钟就能实现AVL的插入和删除操作的大牛(也请大牛不要打击小菜)。本文适合,对avl还不了解,还没有亲自实现avl的插入和删除操作的同学。ps,你在嘲笑楼主的题目时,你

前言:本文不适合 给一组数据15分钟就能实现AVL的插入和删除操作的大牛(也请大牛不要打击小菜)。

本文适合,对avl还不了解,还没有亲自实现avl的插入和删除操作的同学。

ps,你在嘲笑楼主的题目时,你已证明了自己正在嘲笑自己的智商。我们要善于征服陌生的事物。你如果有半个小时时间就心无杂念的开始吧,建议那些读10分钟文章就心燥还是关闭浏览器吧。

文章结构:



什么是二叉排序树(bst)二叉排序树(Binary Sort Tree)又称二叉查找树。 它或者是一棵空树;或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值; (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值; (3)左、右子树也分别为二叉排序树;



好了二叉排序树定义很好理解(如果还不理解,为了不浪费时间,先暂停一下,去google or baidu 下,理解了再继续),再此就不举别的例子了,下面我实现下BST的一些基本操作算法。BST的基本操作

typedef struct _BitNode{ int data; struct _BitNode *lchild,*rchild;}BitNode,*BiTree;

1.1 ,BST的搜索:为什么先实现搜索呢?一般BST里面没有重复的元素,你增添或者删除元素,都必须要先查找一下,看有没有呀,所以BST搜索要先实现,这个搜索是很简单的,慢慢看我讲解吧,我们先看这张图


假如你想找到数值为3的节点并给你这个树的根节点,且规定你只能看到这个根节点左右孩子(其他你们权限看到,也看不到)。那不就是很容易啦,先用3和根节点(此为6)比,显然比6小。那我就去找他的左孩子比,注意,此时4就是6的左子树的根了,那我们就和4这个新的树根比吧,显然又比4小。那我们就继续找这个新根的左孩子比,而此时3就是4的左子树的根了,那我们就和这个根比,哇塞,我们顺藤摸瓜,终于找到了哦!!,那我们就提炼一下这个过程吧,注意哦,我们每次都是和树根相比较的哦!规则:1.先和这棵树的根比2.如果比这个树根小就和这个树根的左子树的根比,否则就和这个树根的右子树比。3.重复2过程,直到根为空为止。 根据3个步骤很容易实现递归代码。//搜索元素,参数依次为0: 根节点,1: 查找的元素,2: 找到目标元素的前一个节点指针,初始值为NULL

// 3:如果返回真把目标到元素的指针指向n,返回假,就把pre复制给n)(参数如果不明白,先不要细究,往下看吧)

bool SearchBST(BiTree T,int key,BiTree pre,BiTree&n);

bool SearchBST(BiTree T,int key,BiTree pre,BiTree&n) { if(!T) { n=pre; //如果此数为空树,那我们就把前一个元素指针pre(此时为NULL)复制给n,注意树为空时,n才为NULL。 return false; //返回假没有找到 } else if(key==T->data) { n=T; //找到了就把目标元素指针给n return true; } if(keydata) SearchBST(T->lchild,key,T,n) ;//去找他的左子树根比 else { SearchBST(T->rchild,key,T,n);//去找他的右子树根比。 } }

1.2 BST的增添元素算法实现有了搜索这个功能,那我们的增添元素的功能就很容易实现了,算法描述:1.先搜所以下所增添的key,在不在此树里面。2.如果没有找到,则申请空间,把key加入里面返回true,否则返回false。

bool InsetBST(BiTree &T,int k) { BitNode* p; if(!SearchBST(T,k,NULL,p)) { BitNode * temp=new BitNode; temp->data=k; temp->lchild=temp->rchild=NULL; if(!p) //只有树为空时,此时的p才为NULL。看到这里应该明白SearchBST(T,k,pre,p)这些参数的意义了吧 { T=temp; } else { if(kdata) //如果不为空树,加入的key值就和p相比较,小于就是他的左孩子,否子为右孩子 p->lchild=temp; else { p->rchild=temp; } } return 0; } else { return false; } }

1.3BST删除元素的算法实现

既然看到这里了,证明你的好奇心很强,这一节看完,我们就离成功不远了,那我们继续吧!

删除总共有3种情况,1只有左子树;2,只有右子树;3,左右子树都有。 先看第一种


如上图所示 我们要删除4这个节点,我们就把他双亲节点的左孩子指向4的左子树。简单吧!。那我么看第二种吧


如上图所示我们所要删除的7节点只有右子树,想必一定想到了,那我们就把他双亲节点的右孩子指向7节点的右孩子,那不就ok啦,太棒了!!。现在看第三种情况吧。

大家看出这三幅图的变化了吗?我们所要删除节点4,为了要保持树的顺序我们就要找比4大的且要离4最近的,那就是他的后继,当然你找前继也是可以的。此图是找他的后继。我们找到后就用4的后继替换4,最后删除后继这个节点。ok,大家看完并理解了这3种情况,那代码实现就很easy啦。

bool DeleElement(BiTree&T,int key) { if(!T) { return 0; //树是空树的话就返回假 } if(T->data==key) { BitNode*s,*p; if(T->rchild==NULL) //只有右子树,情况2 { s=T; T=T->lchild; free(s); } else if(T->lchild==NULL) { s=T; //只有左子树,情况1 T=T->rchild; free(s); } else { //情况3,左右子树都有 p=T; s=T->rchild; while (s->lchild) { p=s; //找到所要删除节点的后继,那就是他的右孩子的 s=s->lchild; } T->data=s->data; //用删除节点的后继替换所删除的节点 if(p!=T) { p->lchild=NULL; //所删除的节点的右孩子不是叶结点 } else p->rchild=NULL; //所删除的节点的右孩子是叶节点 free(s); } return 1; } else if(keydata) DeleElement(T->lchild,key); //去和他的左子树根去比较 else DeleElement(T->rchild,key); //去和他的右子树根去比较 }

//中序遍历并输出元素 void InorderReverse(BiTree T) { if(T) { InorderReverse(T->lchild); cout<data<rchild); p="" }

终于搞完啦,咱也立马上机去测试吧,如果理解了,就自己测试吧,看能不能自己写出来哦!下面是我自己的测试

int main(){ BiTree tree=NULL; int a[]={60,86,50,40,35,74,51,100,37,90}; for(int i=0;i<10;i++) InsetBST(tree,a[i]); InorderReverse(tree); cout<<" "<<endl<<endl; p="" 0;}

到这为止二叉排序树已经搞定了,如果你自己也实现了上述功能,那证明你有很强的好奇心并且很有天赋(因为楼主搞了好几天才明白,你十几分就搞定了,那不是最好的证明吗?ps:楼主是那种很迟钝但很有毅力),有了前面的基础,AVL就是手到擒来,不要灰心哦,鼓足劲就继续征程吧。如果没有理解,先暂停会,避免浪费不必要的时间,就不要往下看了,建议反复认真看几遍,如果还不理解,可能这篇文章不适合你,建议参考其它文章。

什么是AVL定义:

平衡二叉树定义(AVL):它或者是一颗空树,或者具有以下性质的二叉树:它的左子树和右子树的深度之差(平衡因子)的绝对值不超过1,且它的左子树和右子树都是一颗平衡二叉树。

平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1,这里我们定义:

#define EH 0,#define LH 1,#define RH -1.依次为等高,左高,右高。

typedef struct _BitNode

{

int data;

int bf;//平衡因子

struct _BitNode *lchild,*rchild;

}BitNode,*BiTree;

我们都知道,平衡二叉树是在二叉排序树(BST)上引入的(这一点很重要哦,下图为例),就是为了解决二叉排序树的不平衡性导致时间复杂度大大下降,那么AVL就保持住了(BST)的最好时间复杂度O(logn),所以每次的插入和删除都要确保二叉树的平衡,那么怎么保持平衡呢?如果还不理解看看下面的图吧。



看看AVL的魅力吧。有它就有它存在的价值,看下图便知。

图一和图二都是BST,但图二不是AVL,图一是AVL Tree,如果我们要找到10,图一比较次数为3,而图二比较次数为7次,很显然,在规模比较大的话AVL优势就很突出了。既然AVL这么强大,牛叉。那我们就把它拿下吧。2.1 AVL增添元素 这里搜索和BST搜索一样,我就不浪费时间介绍了,我们先实现增加元素的,实现然后删除元素的。可是每次的插入和删除都要确保二叉树的平衡,那么怎么保持平衡呢?我们就引入平衡因子。注意这里再看下平衡因子的定义我先演示下给一组数据,怎么组成一棵AVl Tree。。int a[]={4,3,2,7,9,11,10};1, 插入4,如图:

,平衡因子为0.2, 插入3,如图:

,4的平衡因子因为4的左子树增长了,1-0=1,3, 插入2,如图

,显然4的平衡因子大于1了,为了保持平衡那我们就这样做:让4节点的左孩子指向3的右子树(此时为NULL),让3的右孩子指向4,让树根指向3,如图

,这种操作我们规定为右旋操作,此图是以4为根进行旋转。 代码如下


void R_Rotate(BiTree&T){ BiTree p; // p=T->lchild; //假如此时T指向4,则p指向3; T->lchild=p->rchild; //把3的右子树挂接到4的左子树上(此例子3右子树为空) p->rchild=T; //让3的右孩子指向4. T=p; //根指向节点3}

4,插入7,如图:

5,插入9,如图:

显然节点4不平衡了。那我们就把4的右孩子7的左子树(此时为NULL),让7的左孩子指向4,让3的右孩子指向7,如图:

,我们规定此操作为左旋操作,此图是以4为根进行旋转,代码如下:


void L_Rotate(BiTree&T){ BiTree p; p=T->rchild; //假如此时T指向4,则p指向7. T->rchild=p->lchild; //让7的左子树挂接到4的右子树上 p->lchild=T; //让7的左孩子指向4 T=p; //树根指向7}

6.我们插入11,如图:


显然3节点,不平衡了,大家都应该知道以3为根进行左旋。让3的右孩子指向7的左子树(此时为4)。7的左孩子指向3,根指向7,如下图所示:


7.我们插入10,如图:


显然节点9不平衡,且是右边高,那我们左旋吧,左旋后的效果是上图右图所示。显然这是不对的,10比11小,但在11的右孩子上。(根本原因是9和11的平衡因子符号不同)那我们在怎么办呢,看下图吧:



成功离我们不远了,我们很容易的把这组数据拼出了AVl 树,是不是很有成就感呀。好啦,我们总结下插入元素的有哪些规律吧 1,如上所述的第3步,当插入元素后导致左边高,右边低,并且为4和3的平衡因子符号相同,则右旋。 

2, 如上所诉的第5步,当插入节点9后,导致以4为根的树右边高,左边低,4和7的平衡因子符号相同,则左旋 3,如上所述的第7步,当插入节点10后,导致以9为根的树右边高,左边低,由于9和11的平衡因子符号不同(也就是根和他的右孩子的平衡因子符号不同)不能进行左旋,正确操作:需要先右旋在左旋,要让根和根的右孩子平衡因子符号相同。 4,第4种旋转和3相反,当左边高于右边的话,且根和他的左孩子,平衡因子符号不同,需要先左旋再右旋恩,就是这么简单。在实现插入函数之前,我们先封装2个函数。RightBalance():当右高时需要右平衡时调用;

LeftBalance()功能:当左高时需要左平衡时调用;右平衡函数代码:

void RightBalance(BiTree&T){ BiTree R,rl; //调用此函数时,以T为根的树,右边高于左边,则T->bf=RH。 R=T->rchild; //R是T的右孩子 switch (R->bf) { case RH: //如果 T的右孩子和T他们的平衡因子符号相同时,则直接左旋,这是总结中的第2项 T->bf=R->bf=EH; L_Rotate(T); break;

case EH: T->bf=RH; R->bf=LH; L_Rotate(T); break; case LH: //如果T的右孩子和T他们的平衡因子符合不同时,需要先以T的右孩子为根进行右旋,再以T为根左旋。 //rl为T的右孩子的左孩子 rl=R->lchild; //2次旋转后,T的右孩子的左孩子为新的根 。注意:rl的右子树挂接到R的左子树上,rl的左子树挂接到T的右子树上 switch (rl->bf) //这个switch 是操作T和T的右孩子进行旋转后的平衡因子。 { case EH: T->bf=R->bf=EH; //这些平衡因子操作,大家可以自己画图操作理解 下面的注解 break; ////2次旋转后,T的右孩子的左孩子为新的根 。 //并且rl的右子树挂接到R的左子树上,rl的左子树挂接到T的右子树上,rl为新根 case RH: R->bf=EH; T->bf=LH; break; case LH: R->bf=RH; T->bf=EH; break; default: break; } rl->bf=EH; R_Rotate(T->rchild); //先左旋,以T->rchild为根左旋。 L_Rotate(T); //右旋,以T为根, 左旋后 T是和rl想等,rl是新根 break; }}void LeftBalance(BiTree&T){ BiTree L,lr; L=T->lchild; switch (L->bf) {

case EH: L->bf=RH; T->bf=LH; R_Rotate(T); break; case LH: L->bf=T->bf=EH; R_Rotate(T); break; case RH: lr=L->rchild; switch (lr->bf) { case EH: L->bf=L->bf=EH; case RH: T->bf=EH; L->bf=LH; break; case LH: L->bf=EH; T->bf=RH; break; default: break; } lr->bf=EH; L_Rotate(T->lchild); R_Rotate(T); break; default: break; }}

//哈哈,两元猛将我们已经找到了,但是你看到这有点累了,但不要灰心,成功就在我们脚下,现在放弃,岂不是很可惜啦。那我们就实现插入元素的功能

bool InsertAVLtree(BiTree&T,int key,bool&taller){ if(!T) //此树为空 { T=new BitNode; //直接作为整棵树的根。 T->bf=EH; T->lchild=T->rchild=NULL; T->data=key; taller=true; return true; } else { if(key==T->data) //已有元素,不用插入了,返回false; { taller=false; return false; } if(keydata) //所插元素小于此根的值,就找他的左孩子去比 { if(!InsertAVLtree(T->lchild,key,taller)) //所插元素小于此根的值,就找他的左孩子去比 return false; if(taller) //taller为根,则树长高了,并且插入到了此根的左子树上。 { switch (T->bf) //此根的平衡因子 { case EH: //原先是左右平衡,等高 T->bf=LH; //由于插入到左子树上,导致左高=》》LH taller=true; //继续往上递归 break; case LH: LeftBalance(T); //原先LH,由于插入到了左边,这T这个树,不平衡需要左平衡 taller=false; //以平衡,设taller为false,往上递归就不用进入此语句了, break; case RH: T->bf=EH; //原先RH,由于插入到左边,导致此T平衡 taller=false; break; default: break; } } } else { if(!InsertAVLtree(T->rchild,key,taller)) return false; if(taller) { switch (T->bf) { case EH: T->bf=RH; taller=true; break; case LH: T->bf=EH; taller=false; break; case RH: RightBalance(T); taller=false; break; default: break; } } } }

//中序遍历输出void InOrderReverse(BiTree&T){ if(T) { InOrderReverse(T->lchild); cout<data<rchild); p="" }}

看到这了,自己出一组数据或按照我刚才用一组数据拼成avl的过程,看代码走一遍,你会有不一样的收货的哦(这其实非常重要),并插入了成功了,你已经成功99%了,没有想到自己这么厉害吧,我们接下来完成它的删除操作,我们就完美了。如果你有追求完美的目标,那就跟我走吧

2.2AVL的删除操作



下面我会贴出代码,根据代码把上图的元素删除掉吧,你会成功的

为了更好的理解,建议先把插入代码先实现。

删除代码和BST的删除相似,AVL删除元素后还要照顾好平衡。

bool DeletElement(BiTree&T,int key,bool&lower)//参数(0)树根,(1)删除的元素,(3)此树是否降低标志位

{

bool L,R;//删除的是左子树还是右子树,作为标志。

L=R=false;

if(T==NULL) // 判断树根是否为空

return false;

if(key==T->data)//找到了所要删除的节点

{

BitNode* p,*s;

p=T->rchild;

s=p;

lower=true; //找到了必定删除,lower为真

if(T->rchild==NULL) // 如果所要删除的节点的右孩子为空

{

p=T;

T=T->lchild; //直接删除比如删除上图的 4,9,10,

free(p);

lower=true;

return true;

}

else

{

while (s)//如果所要删除的T节点右子树不为空,就找T的后继,也就是T的右孩子左子树的最左叶节点

{

p=s;

s=s->lchild;

}

T->data=p->data;//替换T

DeletElement(T->rchild,p->data,lower);//删除掉T的后继

R=true;

}

}

else if(key

好吧,请原谅我骗了你,你看到这时,已不止半小时了。但为你使你相信你是有能力看完的,我不得不做这个下贱的谎言。 我不期望你能全部都能按照我的思路写下去,因为我写的还不够好,哪怕你有一点收获,楼主也是值得的。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭