非正交绕组无刷单相同步发电机研究
扫描二维码
随时随地手机看文章
引言
进入21世纪以来,随着国民经济持续、快速增长以及人民生活水平不断提高,汽油发电机作为电源保障设备在各个领域都得到了广泛应用。2020年,我国有数百家企业生产小型汽油发电机,在这些企业中汽油机年产量超过百万台的就有三家,并且这个数量还在逐年增加。在这些发电机中,20%左右是无刷单相发电机,因此分析、研究非正交绕组无刷单相发电机的特性,并根据具体情况加以选用,具有一定的现实意义。
1发电机原理
凸极电容式无刷单相同步发电机接线原理图如图1所示。
图l凸极电容式无刷单相同步发电机接线原理图
由图可以看出,当发电机启动,带动转子旋转至额定转速时,转子铁芯中的剩磁会切割定子的主、副绕组感应产生一定的电压。由于交流电容器所具有的充放电特性,定子副绕组中便将通有容性电流并因此产生单相脉动磁场。根据电机学,一个单相脉动磁场可以分解成两个大小相等、转向相反的旋转磁场,也即逆序磁场和顺序磁场。其中逆序磁场不仅旋转速度与转子转速相等,而且其旋转方向还与转子的转动方向相反。因此,转子磁极绕组就切割这逆序磁场而感应产生出交流电压。由于发电机的转子磁极绕组与整流桥堆串联形成回路,在整流桥的整流作用下,磁极绕组中将只有直流电流流动,该直流电流即为发电机的主励磁电流,使转子磁极建立起主磁场。此外,因为顺序磁场的旋转速度与转子的转速相等且转向相同,所以它也能对磁极主磁场起到补助增强的作用。这样在单相脉动磁场中逆序磁场和顺序磁场的共同作用下,发电机定子的主绕组就逐步建立起空载电压并实现自励。只要设计正确和使用得当,发电机运行在额定转速下,其定子主绕组即能正常地建立起额定电压。
2正交绕组
一般单相电机在其定子上布置了正交分布的两相绕组,它具有可逆运转特性,嵌线工艺性较好,因而得到了广泛的应用。正交绕组结构示意图如图2所示。
图2正交绕组结构示意图
3非正交绕组与正交绕组的对比分析
在有些只需单方向旋转,又要求较高负载性能的场合,正交绕线结构可能会出现温升偏高、电压调整率偏大、效率低等不足。因此,本文提出了一种单相同步发电机的嵌线结构,能够有效解决正交绕组温升高、电压调整率大、效率低等问题。本文所采用的非正交绕组结构示意图如图3所示。
图3非正交绕组结构示意图
设计绕组时,要求用一定的导体数获得较大的电动势,电动势波形要接近正弦波,用铜量要少,铜损耗要小,工艺性要好。因此,单相电枢绕组一般只利用电枢总槽数的2/3~4/5,空出1/3左右槽数作为通风道或嵌辅助绕组。因为利用全部槽数的单相绕组其绕组系数只比用2/3槽数的绕组大13.4%,但用铜量却增加33.3%,另外2/3槽数的单相绕组总匝数少、阻抗小,又能消除空载电动势中的三次谐波电动势,所以从技术经济指标考虑,利用2/3槽数的单相绕组较有利。一般,单相绕组采用单层同心式绕组,且线圈组数等于极数,因为这种绕组的用铜量较少,嵌线方便。所以,本文采用主绕组占2/3槽数、单层同心式绕组。
本文提供了一种单相同步发电机的嵌线结构,包括主绕组、副绕组和直流绕组,采用市场上常用的30槽定子,主绕组和直流绕组共同使用20个线槽,副绕组共使用6个线槽,线槽中设置了4个空槽作为导风槽。定子绕线正交的时候,定子的30槽是满槽的,改为非正交以后,主绕组圈数、线径不变:副绕组有效圈数不变,副绕组线径缩小到原来的75%,这样副绕组只要6槽,空出4槽作为导风槽:这样有利于散热,降低电机温升,而且还节约了成本。且非正交绕组不仅适用于30槽的定子,也同样适用于24槽、36槽和48槽等定子。
如图3所示,主绕组和直流绕组绕线使用的线槽分为两组,一组为1槽、2槽、3槽、4槽、5槽、11槽、12槽、13槽、14槽、15槽,另一组为16槽、17槽、18槽、19槽、20槽、26槽、27槽、28槽、29槽和30槽。
主绕组中的主线由两根直径0.85mm和一根直径0.9mm的漆包线并绕而成,主线共有两组,线圈圈数由小圈到大圈再到小圈依次为15、16、16、16、16、16、16、16、16、15。
直流绕组中的直流线由两根直径0.85mm和一根直径0.9mm的漆包线绕制而成,直流线共有两组,线圈圈数由小圈到大圈再到小圈依次为3、2、2、2、3、3、2、2、2、3。根据实际需求来决定是否需要直流绕组。
副绕组绕线使用的线槽为6槽、7槽、8槽、21槽、22槽和23槽。副绕组由一根直径为0.7mm的漆包线绕制而成,其有效线圈为64、64、64。
空槽为9槽、10槽、24槽和25槽。
当单相同步发电机进入负载运行以后,电枢中主绕组有电流流过,该电流就会产生磁场,电枢电流产生的磁场将对主磁场发生作用,这就产生了电枢反应。主副绕组非正交设计目的是使内功率因数角w,即励磁电势E0与电枢电流之间的时间相位角的大小范围为-909<w<09,电枢反应起助磁作用,使发电机负载能力增强,电压调整率变小。
本例定子槽数Z=30,极数2p=2,单相:表1为该发电机(100V/60Hz)主副绕组两种布置方案的性能比较。
由表1可以看出,采用非正交(1149)绕组,电机温升比原来低10%左右,在同样功率的负载下,电压调整率由原来的8.3%缩小到4.1%,效率提高了将近2个百分点。
4结语
由此可见,对有些只需单方向运转的电机,在某些特定情况下,将定子两绕组设计成适当夹角的非正交绕组,在绕线参数(有效匝数)不变的情况下,非正交(两相夹角大于909)电机较正交电机具有温升低、电压调整率小、负载性能好、效率高、成本低等优点。